Spelling suggestions: "subject:"nonlipschitz"" "subject:"bordlispschitz""
1 |
Estrutura lagrangiana para fluidos compressíveis não barotrópicos em dimensão dois / Lagrangian structure for a non-barotropic compressible fluid in two dimensionsMaluendas Pardo, Pedro Nel, 1977- 22 August 2018 (has links)
Orientador: Marcelo Martins dos Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-22T23:55:02Z (GMT). No. of bitstreams: 1
MaluendasPardo_PedroNel_D.pdf: 1007695 bytes, checksum: 924306ee0dd8ae19e6725f7d2a3349f4 (MD5)
Previous issue date: 2013 / Resumo: Estudamos a estrutura lagrangiana para soluções fracas das equações de Navier-Stokes para um fluido não barotrópico em dimensão dois, i.e., demonstramos a unicidade de trajetórias de partículas para fluidos compressíveis, incluindo a equação da energia, ou seja, com variações de temperatura. Isto estende os resultados de David Hoff e Marcelo Santos para o caso não barotrópico de dimensão dois / Abstract: In this work we study the Lagrangian structure for weak solutions of Navier-Stokes equations for a non-barotropic compressible fluid in two dimensions, i.e., we prove the uniqueness of particle trajectories for two-dimensional compressible fluids, including the energy equation (tempera-ture variations). It extends previous results in [19] for the barotropic two dimensional case / Doutorado / Matematica / Doutora em Matemática
|
2 |
Studies of the Boundary Behaviour of Functions Related to Partial Differential Equations and Several Complex VariablesPersson, Håkan January 2015 (has links)
This thesis consists of a comprehensive summary and six scientific papers dealing with the boundary behaviour of functions related to parabolic partial differential equations and several complex variables. Paper I concerns solutions to non-linear parabolic equations of linear growth. The main results include a backward Harnack inequality, and the Hölder continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary of an NTA cylinder. It is also shown that the Riesz measure associated with such solutions has the doubling property. Paper II is concerned with solutions to linear degenerate parabolic equations, where the degeneracy is controlled by a weight in the Muckenhoupt class 1+2/n. Two main results are that non-negative solutions which vanish continuously on the lateral boundary of an NTA cylinder satisfy a backward Harnack inequality and that the quotient of two such functions is Hölder continuous up to the boundary. Another result is that the parabolic measure associated to such equations has the doubling property. In Paper III, it is shown that a bounded pseudoconvex domain whose boundary is α-Hölder for each 0<α<1, is hyperconvex. Global estimates of the exhaustion function are given. In Paper IV, it is shown that on the closure of a domain whose boundary locally is the graph of a continuous function, all plurisubharmonic functions with continuous boundary values can be uniformly approximated by smooth plurisubharmonic functions defined in neighbourhoods of the closure of the domain. Paper V studies Poletsky’s notion of plurisubharmonicity on compact sets. It is shown that a function is plurisubharmonic on a given compact set if, and only if, it can be pointwise approximated by a decreasing sequence of smooth plurisubharmonic functions defined in neighbourhoods of the set. Paper VI introduces the notion of a P-hyperconvex domain. It is shown that in such a domain, both the Dirichlet problem with respect to functions plurisubharmonic on the closure of the domain, and the problem of approximation by smooth plurisubharmoinc functions in neighbourhoods of the closure of the domain have satisfactory answers in terms of plurisubharmonicity on the boundary.
|
Page generated in 0.0264 seconds