• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Politics of Selection: Towards a Transformative Model of Environmental Innovation

Hausknost, Daniel, Haas, Willi January 2019 (has links) (PDF)
As a purposive sustainability transition requires environmental innovation and innovation policy, we discuss potentials and limitations of three dominant strands of literature in this field, namely the multi-level perspective on socio-technical transitions (MLP), the innovation systems approach (IS), and the long-wave theory of techno-economic paradigm shifts (LWT). All three are epistemologically rooted in an evolutionary understanding of socio-technical change. While these approaches are appropriate to understand market-driven processes of change, they may be deficient as analytical tools for exploring and designing processes of purposive societal transformation. In particular, we argue that the evolutionary mechanism of selection is the key to introducing the strong directionality required for purposive transformative change. In all three innovation theories, we find that the prime selection environment is constituted by the market and, thus, normative societal goals like sustainability are sidelined. Consequently, selection is depoliticised and neither strong directionality nor incumbent regime destabilisation are societally steered. Finally, we offer an analytical framework that builds upon a more political conception of selection and retention and calls for new political institutions to make normatively guided selections. Institutions for transformative innovation need to improve the capacities of complex societies to make binding decisions in politically contested fields.
12

Early Wildfire Detection Using Temporal Filtering and Multi-Band Infrared Analysis

Boynton, Ansel John 01 June 2013 (has links) (PDF)
Every year wildfires threaten or destroy ecological habitats, man-made infrastructure and people’s lives. Additionally millions of dollars are spent each year trying to prevent and control these fires. Ideally if a wildfire can be detected before it rages out of control it can be extinguished and avoid large scale devastation. Traditional manned fire lookout towers are neither cost effective nor particularly efficient at detecting wildfire. It is proposed that temporal filtering can be used to isolate the signals created at the beginnings of potential wildfires. Temporal filtering can remove any background image and any periodic signals created by the camera movement. Once typical signals are analyzed, digital filters can be designed to pass fire signals while blocking the unwanted signals. The temporal filter passes only fire signals and signals generated by moving objects. These objects can be distinguished from each other by analyzing the objects mid and long wave energy profile. This algorithm is tested on 17 data sources and its results analyzed.
13

Electrified thin-film flow over inclined topography

Tudball, Morgan J. January 2018 (has links)
We consider both a long-wave model and a first-order weighted-residual integral boundary layer (WIBL) model in the investigation of thin film flow down a topographical incline whilst under the effects of a normal electric field. The liquid is assumed to be a perfect dielectric, although is trivially extended to the case of a perfect conductor. The perfect dielectric case with no topography includes a simple modified electric Weber number which incorporates the relative electrical permittivity constant into itself. Linear stability analysis is carried out for both models, and critical Reynolds numbers which depend on the electric Weber number and the capillary number are produced. Regions of stability, convective instability and absolute instability are then determined for both models in terms of our electric Weber number and Reynolds number parameters in the case of no topography. Time-dependent simulations are produced to corroborate the aforementioned regions and investigate the effect of normal electric field strength in addition to sinusoidal and rectangular topographical amplitude on our system for various domain sizes. For the time-dependent simulations we find strong agreement with the linear stability analysis, and the results suggest that the inclusion of a normal electric field may have some stabilising properties in the long-wave model which are absent in the case of a flat wall, for which the electric field is always linearly destabilising. This stabilising effect is not observed for the same parameters in the WIBL model with a sinusoidal wall, although a similar effect is noticed in the WIBL model with a rectangular wall. We also investigate the simultaneous effect of domain size, wall amplitude and electric field strength on the critical Reynolds numbers for both models, and find that increasing the electric field strength can make large-amplitude sinusoidal topography stabilising rather than destabilising for the long-wave model. Continuation curves of steady solutions and bifurcation diagrams are also produced, and comparisons between the two models are made for various parameter values, which show excellent agreement with the literature. Subharmonic branches and time-periodic solutions are additionally included, similarly showing very good agreement with the literature.
14

Growth, Accumulation, Crisis : With New Macroeconomic Data for Sweden 1800-2000

Edvinsson, Rodney January 2005 (has links)
This dissertation has two main objectives. The first one is to construct historical macroeconomic series for Sweden using a consistent method throughout the relevant periods, and which rely on modern methods of national accounting. The second objective is to investigate patterns of economic growth, accumulation and crisis in Sweden 1800-2000, based on the constructed data series. New annual data series of Gross Domestic Product and its division into activities (type of production) and expenditures (consumption, investment and foreign trade), Net Domestic Product, stocks of produced assets and consumption of fixed assets are constructed for the period 1800-2000; series of employment, wages, imputed labour income of self employed and surplus for the period 1850-2000; and series of worked hours for the period 1950-2000. Summary tables of the main aggregate variables are presented at the end of the dissertation. The intent is to make the data material available online (also at a more disaggregated level) at: http://www.historia.se. Although the present study criticises the somewhat deterministic vision of many long cycle theories, it also demonstrates that the concept of long cycle can be applied when studying long-term fluctuations in GDP per capita, provided that the notion of a fixed periodicity of long cycles is abandoned. Long-term economic fluctuations are irregular, but so is also the short-term business cycle. Different historical tendencies and trends are investigated. The decline of the relative size of industrial activities in the last half of 20th century was not as dramatic, if unpaid household labour is considered and that many services are industry-related. The Marxist theory of a Tendency for the Rate of Profit to Fall is partly confirmed as a secular process up to the 1970s, but profitability has rebounded in the last two decades of the 20th century. During the 1990s, the investment ratio declined to historically low levels and the volume value of the net stock of buildings and structures fell for the first time since the 1830s. A comparison is also made of depressions in Sweden since 1850. During the 19th century, depressions were largely induced by the agricultural sector, and during the 20th century by industrial activities. However, the transition to the modern business cycle was not sudden but rather protracted. Another finding is that the 1990s depression was somewhat deeper than the 1930s depression in terms of GDP contraction.
15

Study of interface evolution between two immiscible fluids due to a time periodic electric field in a microfluidic channel / Etude de l'instabilité de l'interface entre deux fluides immiscibles sous un écoulement electro-osmotique dans un canal microfluidique

Mayur, Manik 09 December 2013 (has links)
Dans cette thèse, on a étudié l’évolution de l’interface par électro-osmose entre deux couches de fluides dans un canal microfluidique. Les applications de ce problème concernent le mélange et le transport, sans contact avec des actionneurs, de fluides en micro-canal. De nombreuses questions restent toutefois posées lorsque le champ est oscillant en temps, notamment vis à vis de la stabilité de l'interface entre les deux fluides. Une analyse de stabilité linéaire basée sur une perturbation à l’interface a été réalisée pour un film mince d'électrolyte sous des champs électriques continus (constants) et alternatifs (dépendant du temps). Une analyse asymptotique avec une hypothèse de grande longueur d’onde des équations d'Orr-Sommerfeld a été appliquée afin de déterminer les seuils de stabilité paramétriques d'un film mince aqueux. L’accent a été mis sur les effets de la tension de surface, de la pression de disjonction pour l'interaction gaz-liquide-substrat, de l'amplitude et de la fréquence du champ électrique appliqué, ainsi que du potentiel zêta du substrat et de la surface libre. Une analyse comparative des profils de vitesse de l’état de base avec et sans contraintes de Maxwell à l’interface, a montré que les gradients de vitesse étaient importants à l'interface liquide-liquide avec les contraintes de Maxwell. De tels gradients sont essentiels à l'instabilité interfaciale sous l’action d’un champ électrique périodique car ils peuvent atténuer ou amplifier les ondes à l’interface. Parallèlement, un dispositif expérimental a été conçu et monté afin de caractériser l’écoulement électroosmotique dans un micro-canal rectangulaire. Avec l'aide d'une analyse PTV (« Particle Tracking Velocimetry »), les distributions de vitesse ont été obtenues et comparées aux prédictions théoriques. Cette comparaison a permis d’estimer le potentiel zêta du PDMS utilisé, valeur conforme à la valeur indiquée dans la littérature. / Since the past decade, use of electro-osmotic flow (EOF) as an alternative flow mechanism in microdevices is becoming more popular due to its less bulky and low maintenance system design. However, one of the biggest shortcomings for its usage in mainstream applications is that it requires the concerned liquid to be electrically conductive. One idea can be to use the flow of conductive fluids to transport non-conductive liquids passively via interfacial shear transfer. Such an idea can has numerous applications in a wide range of fields like bio-chemical processing (e.g. lab-on-a-chip reactors, mixers, etc.), to oil extraction from porous rock formations. One of the significant characteristics of micro-scale flows is high surface to volume ratio, which significantly highlights the role of multi-phase interfaces in such dynamics. The presence of a fluid-fluid interface in an EOF necessitates the characterization of the parameters responsible for hydrodynamic instability of such systems. The present work focuses on the role of steady and time-dependent electric stress (Maxwell stress), capillary force and disjoining pressure on fluid-fluid interfacial instability. A linear stability analysis of interfacial perturbation was performed for a thin film of electrolyte under DC and AC electric fields. Through long wave asymptotic analysis of the Orr-Sommerfeld equations, parametric stability thresholds of a thin aqueous film explored. Further, a set of experiments were performed in order to characterize the EOF in a rectangular microchannel. With the help of a Particle Tracking Velocimetry analysis, velocity distributions were obtained which agreed well to the theoretical values. This was further used to estimate PDMS zeta potential, which was found to be within the reported values in the existing literature. Liquid-liquid interfacial deformation was also explored under a time-periodic EOF and a wide range of the magnitudes of capillary force, and diffusive and convective transport.
16

Investigation of soliton equations with integral operators and their dynamics

Vikars Hall, Ruben, Svennerstedt, Carl January 2023 (has links)
We present Lax pairs and functions called Lax functions corresponding to Calogero- Moser-Sutherland (CMS) systems. We present the Benjamin-Ono (BO) equation and a pole ansatz to the BO equation, constructed from a specific type of Lax function called a special Lax function corresponding to Rational and Trigonometric CMS systems. We present a generalization of the BO equation called the non-chiral Intermediate wave (ncILW) equation and show that a family of solutions to the ncILW equation can be constructed from the special Lax function corresponding to the hyperbolic CMS system. We present the Szegö equation on the circle and the real line. We obtain a family of solutions to the Szegö equation on the real line using a pole ansatz. Using numerical methods, we display solution plots to the BO equation and Szegö equation.
17

Evolution and stability of falling liquid films with thermocapillary effects - Evolution et stabilité de films liquides tombants avec effets thermocapillaires

Scheid, Benoit 15 March 2004 (has links)
This thesis deals with the dynamics of a thin liquid film falling down a heated plate. The heating yields surface tension gradients that induce thermocapillary stresses on the free surface, thus affecting the stability and the evolution of the film. Accounting for the coherence of the flow due to viscosity, two main approaches that reduce the dimensionality of the original problem are usually considered depending on the flow rate (as measured by the Reynolds number): the `long wave' asymptotic expansion for small Reynolds numbers and the `integral boundary layer' approximation for moderate Reynolds numbers. The former suffers from singularities and the latter from incorrectness of the instability threshold for the occurrence of hydrodynamic waves. Thus, the aim of this thesis is twofold: in a first part, we define quantitatively the validity of the `long wave' evolution equation (Benney equation) for the film thickness h including the thermocapillary effect; and in a second part, we improve the `integral boundary layer' approach by combining a gradient expansion to a weighted residual method. In the first part, we further investigate the Benney equation in its validity domain in the case of periodically inhomogeneous heating in the streamwise direction. It induces steady-state deformations of the free surface with increased transfer rate in regions where the film is thinner, and also in average. The inhomogeneities of the heating also modify the nature of travelling wave solutions at moderate temperature gradients and allows for suppressing wave motion at larger ones. Moreover, large temperature gradients (for instance positive ones) in the streamwise direction produce large local film thickening that may in turn become unstable with respect to transverse disturbances such that the flow may organize in rivulet-like structures. The mechanism of such instability is elucidated via an energy analysis. The main features of the rivulet pattern are described experimentally and recovered by direct numerical simulations. In the second part, various models are obtained, which are valid for larger Reynolds numbers than the Benney equation and account for second-order viscous and inertial effects. We then elaborate a strategy to select the optimal model in terms of linear stability properties and existence of nonlinear solutions (solitary waves), for the widest possible range of parameters. This model -- called reduced model -- is a system of three coupled evolution equations for the local film thickness h, the local flow rate q and the surface temperature Ts. Solutions of this model indicate that the interaction of the hydrodynamic and thermocapillary modes is non-trivial, especially in the region of large-amplitude solitary waves. Finally, the three-dimensional evolution of the solutions of the reduced model in the presence of periodic forcing and noise compares favourably with available experimental data in isothermal conditions and with direct numerical simulations in non-isothermal conditions. ------------------------------------------------ Cette thèse analyse la dynamique d'un film mince s'écoulant le long d'une paroi chauffée. Le chauffage crée des gradients de tension superficielle qui induisent des tensions thermocapillaires à la surface libre, altérant ainsi la stabilité et l'évolution du film. Grâce à la cohérence de l'écoulement assurée par la viscosité, deux approches permettant de réduire la dimensionnalité du problème original sont habituellement considérées suivant le débit (mesuré par le nombre de Reynolds): l'approximation asymptotique dite `longues ondes' pour les faibles nombres de Reynolds et l'approximation `intégrale couche limite' pour les nombres de Reynolds modérés. Cependant, la première approximation souffre de singularités et la dernière de prédictions imprécises du seuil de stabilité des ondes hydrodynamiques à la surface du film. Le but de cette thèse est donc double: dans une première partie, il s'agit de déterminer, de manière quantitative, la validité de l'équation d'évolution `longues ondes' (ou équation de Benney) pour l'épaisseur du film h, en y incluant l'effet thermocapillaire; et dans une seconde partie, il s'agit d'améliorer l'approche `intégrale couche limite' en combinant un développement en gradients avec une méthode aux résidus pondérés. Dans la première partie, nous étudions l'équation de Benney, dans son domaine de validité, dans le cas d'un chauffage inhomogène et périodique dans la direction de l'écoulement. Cela induit des déformations permanentes de la surface libre avec un accroissement du transfert de chaleur dans les régions où le film est plus mince, mais aussi en moyenne. Un chauffage inhomogène modifie également la nature des solutions d'ondes progressives pour des gradients de températures modérés et conduit même à leur suppression pour des gradients de températures plus importants. De plus, ceux-ci, lorsqu'ils sont par exemple positifs le long de l'écoulement, produisent des épaississements localisés du film qui peuvent à leur tour devenir instables par rapport à des perturbations suivant la direction transverse à l'écoulement. Ce dernier s'organise alors sous forme d'une structure en rivulets. Le mécanisme de cette instabilité est élucidé via une analyse énergétique des perturbations. Les principales caractéristiques des structures en rivulets sont décrites expérimentalement et retrouvées par l'intermédiaire de simulations numériques. Dans la seconde partie, nous dérivons une famille de modèles valables pour des nombres de Reynolds plus grands que l'équation de Benney, qui prennent en compte les effets visqueux et inertiels du second ordre. Nous élaborons ensuite une stratégie pour sélectionner le modèle optimal en fonction de ses propriétés de stabilité linéaire et de l'existence de solutions non-linéaires (ondes solitaires), et ce pour la gamme de paramètres la plus large possible. Ce modèle -- appelé modèle réduit -- est un système de trois équations d'évolution couplées pour l'épaisseur locale de film h, le débit local q et la température de surface Ts. Les solutions de ce modèle indiquent que l'interaction des modes hydrodynamiques et thermocapillaires n'est pas triviale, spécialement dans le domaine des ondes solitaires de grande amplitude. Finalement, l'évolution tri-dimensionnelle des solutions du modèle réduit en présence d'un forçage périodique ou d'un bruit se compare favorablement aux données expérimentales disponibles en conditions isothermes, ainsi qu'aux simulations numériques directes en conditions non-isothermes
18

Study of interface evolution between two immiscible fluids due to a time periodic electric field in a microfluidic channel

Mayur, Manik 09 December 2013 (has links) (PDF)
Since the past decade, use of electro-osmotic flow (EOF) as an alternative flow mechanism in microdevices is becoming more popular due to its less bulky and low maintenance system design. However, one of the biggest shortcomings for its usage in mainstream applications is that it requires the concerned liquid to be electrically conductive. One idea can be to use the flow of conductive fluids to transport non-conductive liquids passively via interfacial shear transfer. Such an idea can has numerous applications in a wide range of fields like bio-chemical processing (e.g. lab-on-a-chip reactors, mixers, etc.), to oil extraction from porous rock formations. One of the significant characteristics of micro-scale flows is high surface to volume ratio, which significantly highlights the role of multi-phase interfaces in such dynamics. The presence of a fluid-fluid interface in an EOF necessitates the characterization of the parameters responsible for hydrodynamic instability of such systems. The present work focuses on the role of steady and time-dependent electric stress (Maxwell stress), capillary force and disjoining pressure on fluid-fluid interfacial instability. A linear stability analysis of interfacial perturbation was performed for a thin film of electrolyte under DC and AC electric fields. Through long wave asymptotic analysis of the Orr-Sommerfeld equations, parametric stability thresholds of a thin aqueous film explored. Further, a set of experiments were performed in order to characterize the EOF in a rectangular microchannel. With the help of a Particle Tracking Velocimetry analysis, velocity distributions were obtained which agreed well to the theoretical values. This was further used to estimate PDMS zeta potential, which was found to be within the reported values in the existing literature. Liquid-liquid interfacial deformation was also explored under a time-periodic EOF and a wide range of the magnitudes of capillary force, and diffusive and convective transport.
19

Structure and Dynamics of the Inter-tropical Convergence zones

Dixit, Vijay Vishal January 2015 (has links) (PDF)
The east-west oriented cloud bands in the tropics are called the Inter-tropical Con-vergence Zones (ITCZ). Till recently, the ITCZ has been assumed to have a simple vertical structure with convergence near the surface boundary layer and divergence near the tropopause. Recent work has shown that the ITCZ can have a complex ver-tical structure with multi-level ows. This complex structure has a profound impact on the mass, momentum and energy budget in the ITCZ. This thesis addresses the factors that govern the shallow meridional circulation that occurs in the ITCZ and the mechanisms that govern the abrupt poleward transition and the gradual poleward migration . The shallow meridional circulation forms when the boundary layer ow that con-verges in the ITCZ, rises above the boundary layer and diverges in the lower tropo-sphere. The ow above the boundary layer is in the direction opposite to the direction of the ow within the boundary layer. Some authors have argued that this is caused by the reversal of pressure gradients just above the boundary layer in response to strong sea surface temperature gradients. This hypothesis neglects the eect of plan-etary rotation on the ow and was found to be insucient to explain the formation of shallow meridional circulation. In the east Pacic ocean, the shallow circulation forms only to the south of the ITCZ when the ITCZ forms away from the equator, while it is absent when the ITCZ forms close to the equator. The aqua-planet simulations of the equatorial and the o-equatorial ITCZ were conducted using Community Atmosphere Model (CAM 3.0). The model used the Eulerian dynamical core with T42 horizontal resolution and 26 levels in vertical. Each simulation was run for 3 years and analysis of last six months was presented. The simulations reproduced the contrast in the vertical structure of the equatorial and o-equatorial ITCZ. The shallow circulation was simulated with-out the reversal of pressure gradients and the SST gradients were weakest when the shallow circulation was simulated. We have proposed a new mechanism for the exis-tence of shallow meridional circulation in the ITCZ. We have argued that, in Earth's atmosphere, the mean horizontal ow generally occurs in the direction perpendicular to the direction of applied pressure gradient due to the action of Coriolis force. If the local rotational eects of the ow (relative vorticity) cancels the action of the Coriolis force, then a ow along the pressure gradient is possible. We demonstrated that this condition was satised only to the south of the ITCZ when it forms away from the equator. The ITCZ is characterized by the maximum mass convergence in the boundary layer. The mass convergence is mainly caused by the deceleration of poleward ow in the boundary layer. When the ITCZ forms close to the equator, the ow in the boundary layer is a resultant of vector addition of three forces, a pressure gradient force in the north-south direction (i.e., the ow towards low pressure), a Coriolis force which acts in the east-west direction( perpendicular to the direction of the ow), and surface friction which opposes the resultant ow. When the ITCZ forms away from the equator a three way balance does not capture the dynamics of ow. As the poleward ow is accelerated towards low pressure, it has to advect a considerable amount of zonal momentum with it which acts to retard the poleward ow. This eect of advection of zonal momentum has to be included in the force balance to obtain an accurate estimate of the ow and associated convergence. The ITCZ acts like a heat engine. The energy is gained near the surface, some energy is transported towards pole while some is utilized in driving the meridional circulation. The rest is rejected near the tropopause. The transport within the troposphere occurs through the vertical or horizontal advection of the energy due to vertical and horizontal motions respectively. Our analysis of the ITCZ suggests that; a large amount of transport occurs through horizontal motions that was neglected in the previous studies. The detailed analysis suggests that the latent energy in the form of mass of water vapor is exported out of the ITCZ at dierent levels in association with the multilevel ows. The equatorial and the o-equatorial ITCZ are dierent because, evaporation is larger in the o-equatorial ITCZ when compared to the equatorial ITCZ. The ITCZ shows a strong sub-seasonal variability in its location in the Indian Ocean and the west Pacic Ocean during boreal summer. There are two favorable locations, one near the equator and another away from the equator, for formation of the ITCZ. The equatorial ITCZ either propagates abruptly or gradually to the o-equatorial location. A detailed analysis of moisture and momentum budget of the simulated abrupt and gradual propagations enabled us to separate the role of thermo-dynamic and dynamic processes. We found that, if the equatorial ITCZ would propa-gate abruptly or gradually to the o-equatorial location is decided by the availability of the water vapor in the boundary layer between the two locations of the ITCZ, i.e., by the thermodynamic processes. But, such a transition to the o-equatorial location is allowed only when the constraints imposed by the re-adjustment in the circulation are satised. In simple terms, these constraints emerge due to two processes. 1. The Earth (lower boundary of the atmosphere) spins at maximum eective radius near the equator. As a result, the atmosphere gains maximum angular momentum near the equator (`zonal momentum' in Cartesian co-ordinates) . The ITCZ is one of the primary avenues to transport the zonal momentum from the lower troposphere to the upper troposphere. When the favorable location of ITCZ is near the equator, the location of ITCZ and the location where atmosphere gains maximum zonal momentum are coincident. The ITCZ and associated meridional circulation transports the zonal momentum upwards which is then transported polewards. As the favorable location of ITCZ moves away from the equator, the two locations are die rent. As a result, the atmospheric ow has to re-adjust so that the zonal momentum is transported from the equator to the favorable location of the ITCZ which then transports it upwards and polewards. In summary, this thesis proposes a new mechanism for the generation of shallow meridional circulation, the abrupt transition and the gradual propagations of the ITCZ.
20

Advancements Toward High Operating Temperature Small Pixel Infrared Focal Plane Arrays: Superlattice Heterostructure Engineering, Passivation, and Open-Circuit Voltage Architecture

Specht, Teressa Rose 13 November 2020 (has links)
No description available.

Page generated in 0.0699 seconds