• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamics and stability of a non-Newtonian falling film

Chakraborty, Symphony 02 July 2012 (has links) (PDF)
On étudie la dynamique d'un film mince d'un fluide non-newtonien s'écoulant sur un plan incliné sous l'action de la gravité en tenant compte des effets d'une rhéologie complexe sur la dynamique des ondes de surface. Au chapitre 3, les propriétés des ondes solitaires, qui organisent la dynamique désordonnée d'un film Newtonien, sont considérées. Des simulations numériques directes (DNSs) d'ondes solitaires ont été effectués et comparés aux résultats d'un modèle à quatre équations formulé dans [112]. Au chapitre 5, l'évolution d'un film de fluide en loi de puissance film est modélisée au moyen de l'approche aux résidus pondérés. Les comparaisons avec l'analyse de stabilité d'Orr-Sommerfeld et de la DNS est en bon accord dans les régimes linéaires et non linéaires. Un film de fluide viscoplastique est modélisé par la loi Herschel et Bulkley est étudié au chapitre 6. L'élasticité du pseudo-bouchon à l'interface est pris en compte par une relation constitutive élastovisco-plastique proposée par Saramito [121]. Un modèle est formulé en termes de quatre équations pour l'épaisseur du film, le débit local et les amplitudes des contraintes normales et tangentielles. Une analyse de stabilité linéaire donne des valeurs du nombre de Reynolds critique en bon accord avec l'analyse d'Orr-Sommerfeld.
2

Evolution and stability of falling liquid films with thermocapillary effects - Evolution et stabilité de films liquides tombants avec effets thermocapillaires

Scheid, Benoit 15 March 2004 (has links)
This thesis deals with the dynamics of a thin liquid film falling down a heated plate. The heating yields surface tension gradients that induce thermocapillary stresses on the free surface, thus affecting the stability and the evolution of the film. Accounting for the coherence of the flow due to viscosity, two main approaches that reduce the dimensionality of the original problem are usually considered depending on the flow rate (as measured by the Reynolds number): the `long wave' asymptotic expansion for small Reynolds numbers and the `integral boundary layer' approximation for moderate Reynolds numbers. The former suffers from singularities and the latter from incorrectness of the instability threshold for the occurrence of hydrodynamic waves. Thus, the aim of this thesis is twofold: in a first part, we define quantitatively the validity of the `long wave' evolution equation (Benney equation) for the film thickness h including the thermocapillary effect; and in a second part, we improve the `integral boundary layer' approach by combining a gradient expansion to a weighted residual method. In the first part, we further investigate the Benney equation in its validity domain in the case of periodically inhomogeneous heating in the streamwise direction. It induces steady-state deformations of the free surface with increased transfer rate in regions where the film is thinner, and also in average. The inhomogeneities of the heating also modify the nature of travelling wave solutions at moderate temperature gradients and allows for suppressing wave motion at larger ones. Moreover, large temperature gradients (for instance positive ones) in the streamwise direction produce large local film thickening that may in turn become unstable with respect to transverse disturbances such that the flow may organize in rivulet-like structures. The mechanism of such instability is elucidated via an energy analysis. The main features of the rivulet pattern are described experimentally and recovered by direct numerical simulations. In the second part, various models are obtained, which are valid for larger Reynolds numbers than the Benney equation and account for second-order viscous and inertial effects. We then elaborate a strategy to select the optimal model in terms of linear stability properties and existence of nonlinear solutions (solitary waves), for the widest possible range of parameters. This model -- called reduced model -- is a system of three coupled evolution equations for the local film thickness h, the local flow rate q and the surface temperature Ts. Solutions of this model indicate that the interaction of the hydrodynamic and thermocapillary modes is non-trivial, especially in the region of large-amplitude solitary waves. Finally, the three-dimensional evolution of the solutions of the reduced model in the presence of periodic forcing and noise compares favourably with available experimental data in isothermal conditions and with direct numerical simulations in non-isothermal conditions. ------------------------------------------------ Cette thèse analyse la dynamique d'un film mince s'écoulant le long d'une paroi chauffée. Le chauffage crée des gradients de tension superficielle qui induisent des tensions thermocapillaires à la surface libre, altérant ainsi la stabilité et l'évolution du film. Grâce à la cohérence de l'écoulement assurée par la viscosité, deux approches permettant de réduire la dimensionnalité du problème original sont habituellement considérées suivant le débit (mesuré par le nombre de Reynolds): l'approximation asymptotique dite `longues ondes' pour les faibles nombres de Reynolds et l'approximation `intégrale couche limite' pour les nombres de Reynolds modérés. Cependant, la première approximation souffre de singularités et la dernière de prédictions imprécises du seuil de stabilité des ondes hydrodynamiques à la surface du film. Le but de cette thèse est donc double: dans une première partie, il s'agit de déterminer, de manière quantitative, la validité de l'équation d'évolution `longues ondes' (ou équation de Benney) pour l'épaisseur du film h, en y incluant l'effet thermocapillaire; et dans une seconde partie, il s'agit d'améliorer l'approche `intégrale couche limite' en combinant un développement en gradients avec une méthode aux résidus pondérés. Dans la première partie, nous étudions l'équation de Benney, dans son domaine de validité, dans le cas d'un chauffage inhomogène et périodique dans la direction de l'écoulement. Cela induit des déformations permanentes de la surface libre avec un accroissement du transfert de chaleur dans les régions où le film est plus mince, mais aussi en moyenne. Un chauffage inhomogène modifie également la nature des solutions d'ondes progressives pour des gradients de températures modérés et conduit même à leur suppression pour des gradients de températures plus importants. De plus, ceux-ci, lorsqu'ils sont par exemple positifs le long de l'écoulement, produisent des épaississements localisés du film qui peuvent à leur tour devenir instables par rapport à des perturbations suivant la direction transverse à l'écoulement. Ce dernier s'organise alors sous forme d'une structure en rivulets. Le mécanisme de cette instabilité est élucidé via une analyse énergétique des perturbations. Les principales caractéristiques des structures en rivulets sont décrites expérimentalement et retrouvées par l'intermédiaire de simulations numériques. Dans la seconde partie, nous dérivons une famille de modèles valables pour des nombres de Reynolds plus grands que l'équation de Benney, qui prennent en compte les effets visqueux et inertiels du second ordre. Nous élaborons ensuite une stratégie pour sélectionner le modèle optimal en fonction de ses propriétés de stabilité linéaire et de l'existence de solutions non-linéaires (ondes solitaires), et ce pour la gamme de paramètres la plus large possible. Ce modèle -- appelé modèle réduit -- est un système de trois équations d'évolution couplées pour l'épaisseur locale de film h, le débit local q et la température de surface Ts. Les solutions de ce modèle indiquent que l'interaction des modes hydrodynamiques et thermocapillaires n'est pas triviale, spécialement dans le domaine des ondes solitaires de grande amplitude. Finalement, l'évolution tri-dimensionnelle des solutions du modèle réduit en présence d'un forçage périodique ou d'un bruit se compare favorablement aux données expérimentales disponibles en conditions isothermes, ainsi qu'aux simulations numériques directes en conditions non-isothermes
3

Conventional and Reciprocal Approaches to the Forward and Inverse Problems of Electroencephalography

Finke, Stefan 03 1900 (has links)
Le problème inverse en électroencéphalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu générés par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problème direct en EEG. Pour résoudre le problème direct, des modèles sont requis à la fois pour la configuration de source sous-jacente, soit le modèle de source, et pour les tissues environnants, soit le modèle de la tête. Cette thèse traite deux approches bien distinctes pour la résolution du problème direct et inverse en EEG en utilisant la méthode des éléments de frontières (BEM): l’approche conventionnelle et l’approche réciproque. L’approche conventionnelle pour le problème direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre côté, l’approche réciproque détermine d’abord le champ électrique aux sites des sources dipolaires quand les électrodes de surfaces sont utilisées pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ électrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche réciproque promet un nombre d’avantages par rapport à l’approche conventionnelle dont la possibilité d’augmenter la précision des potentiels de surface et de réduire les exigences informatiques pour les solutions inverses. Dans cette thèse, les équations BEM pour les approches conventionnelle et réciproque sont développées en utilisant une formulation courante, la méthode des résidus pondérés. La réalisation numérique des deux approches pour le problème direct est décrite pour un seul modèle de source dipolaire. Un modèle de tête de trois sphères concentriques pour lequel des solutions analytiques sont disponibles est utilisé. Les potentiels de surfaces sont calculés aux centroïdes ou aux sommets des éléments de discrétisation BEM utilisés. La performance des approches conventionnelle et réciproque pour le problème direct est évaluée pour des dipôles radiaux et tangentiels d’excentricité variable et deux valeurs très différentes pour la conductivité du crâne. On détermine ensuite si les avantages potentiels de l’approche réciproquesuggérés par les simulations du problème direct peuvent êtres exploités pour donner des solutions inverses plus précises. Des solutions inverses à un seul dipôle sont obtenues en utilisant la minimisation par méthode du simplexe pour à la fois l’approche conventionnelle et réciproque, chacun avec des versions aux centroïdes et aux sommets. Encore une fois, les simulations numériques sont effectuées sur un modèle à trois sphères concentriques pour des dipôles radiaux et tangentiels d’excentricité variable. La précision des solutions inverses des deux approches est comparée pour les deux conductivités différentes du crâne, et leurs sensibilités relatives aux erreurs de conductivité du crâne et au bruit sont évaluées. Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus précises pour une conductivité du crâne supposément plus réaliste, les deux approches, conventionnelle et réciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipôles très excentriques. Les approches réciproques produisent le moins de variations en précision des solutions directes pour différentes valeurs de conductivité du crâne. En termes de solutions inverses pour un seul dipôle, les approches conventionnelle et réciproque sont de précision semblable. Les erreurs de localisation sont petites, même pour des dipôles très excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, à cause de la nature non linéaire des solutions inverses pour un dipôle. Les deux approches se sont démontrées également robustes aux erreurs de conductivité du crâne quand du bruit est présent. Finalement, un modèle plus réaliste de la tête est obtenu en utilisant des images par resonace magnétique (IRM) à partir desquelles les surfaces du cuir chevelu, du crâne et du cerveau/liquide céphalorachidien (LCR) sont extraites. Les deux approches sont validées sur ce type de modèle en utilisant des véritables potentiels évoqués somatosensoriels enregistrés à la suite de stimulation du nerf médian chez des sujets sains. La précision des solutions inverses pour les approches conventionnelle et réciproque et leurs variantes, en les comparant à des sites anatomiques connus sur IRM, est encore une fois évaluée pour les deux conductivités différentes du crâne. Leurs avantages et inconvénients incluant leurs exigences informatiques sont également évalués. Encore une fois, les approches conventionnelle et réciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses à un seul dipôle sont robustes de manière inhérente au manque de précision dans les solutions directes, mais dépendent de l’activité superposée d’autres sources neurales. Contrairement aux attentes, les approches réciproques n’améliorent pas la précision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques réduites en temps et en espace sont les avantages principaux des approches réciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale réfractaire qui ont souvent déjà fait un EEG et IRM. / The inverse problem of electroencephalography (EEG) is the localization of current sources within the brain using surface potentials on the scalp generated by these sources. An inverse solution typically involves multiple calculations of scalp surface potentials, i.e., the EEG forward problem. To solve the forward problem, models are needed for both the underlying source configuration, the source model, and the surrounding tissues, the head model. This thesis treats two distinct approaches for the resolution of the EEG forward and inverse problems using the boundary-element method (BEM): the conventional approach and the reciprocal approach. The conventional approach to the forward problem entails calculating the surface potentials starting from source current dipoles. The reciprocal approach, on the other hand, first solves for the electric field at the source dipole locations when the surface electrodes are reciprocally energized with a unit current. A scalar product of this electric field with the source dipoles then yields the surface potentials. The reciprocal approach promises a number of advantages over the conventional approach, including the possibility of increased surface potential accuracy and decreased computational requirements for inverse solutions. In this thesis, the BEM equations for the conventional and reciprocal approaches are developed using a common weighted-residual formulation. The numerical implementation of both approaches to the forward problem is described for a single-dipole source model. A three-concentric-spheres head model is used for which analytic solutions are available. Scalp potentials are calculated at either the centroids or the vertices of the BEM discretization elements used. The performance of the conventional and reciprocal approaches to the forward problem is evaluated for radial and tangential dipoles of varying eccentricities and two widely different skull conductivities. We then determine whether the potential advantages of the reciprocal approach suggested by forward problem simulations can be exploited to yield more accurate inverse solutions. Single-dipole inverse solutions are obtained using simplex minimization for both the conventional and reciprocal approaches, each with centroid and vertex options. Again, numerical simulations are performed on a three-concentric-spheres model for radial and tangential dipoles of varying eccentricities. The inverse solution accuracy of both approaches is compared for the two different skull conductivities and their relative sensitivity to skull conductivity errors and noise is assessed. While the conventional vertex approach yields the most accurate forward solutions for a presumably more realistic skull conductivity value, both conventional and reciprocal approaches exhibit large errors in scalp potentials for highly eccentric dipoles. The reciprocal approaches produce the least variation in forward solution accuracy for different skull conductivity values. In terms of single-dipole inverse solutions, conventional and reciprocal approaches demonstrate comparable accuracy. Localization errors are low even for highly eccentric dipoles that produce large errors in scalp potentials on account of the nonlinear nature of the single-dipole inverse solution. Both approaches are also found to be equally robust to skull conductivity errors in the presence of noise. Finally, a more realistic head model is obtained using magnetic resonance imaging (MRI) from which the scalp, skull, and brain/cerebrospinal fluid (CSF) surfaces are extracted. The two approaches are validated on this type of model using actual somatosensory evoked potentials (SEPs) recorded following median nerve stimulation in healthy subjects. The inverse solution accuracy of the conventional and reciprocal approaches and their variants, when compared to known anatomical landmarks on MRI, is again evaluated for the two different skull conductivities. Their respective advantages and disadvantages including computational requirements are also assessed. Once again, conventional and reciprocal approaches produce similarly small dipole position errors. Indeed, position errors for single-dipole inverse solutions are inherently robust to inaccuracies in forward solutions, but dependent on the overlapping activity of other neural sources. Against expectations, the reciprocal approaches do not improve dipole position accuracy when compared to the conventional approaches. However, significantly smaller time and storage requirements are the principal advantages of the reciprocal approaches. This type of localization is potentially useful in the planning of neurosurgical interventions, for example, in patients with refractory focal epilepsy in whom EEG and MRI are often already performed.
4

Conventional and Reciprocal Approaches to the Forward and Inverse Problems of Electroencephalography

Finke, Stefan 03 1900 (has links)
Le problème inverse en électroencéphalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu générés par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problème direct en EEG. Pour résoudre le problème direct, des modèles sont requis à la fois pour la configuration de source sous-jacente, soit le modèle de source, et pour les tissues environnants, soit le modèle de la tête. Cette thèse traite deux approches bien distinctes pour la résolution du problème direct et inverse en EEG en utilisant la méthode des éléments de frontières (BEM): l’approche conventionnelle et l’approche réciproque. L’approche conventionnelle pour le problème direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre côté, l’approche réciproque détermine d’abord le champ électrique aux sites des sources dipolaires quand les électrodes de surfaces sont utilisées pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ électrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche réciproque promet un nombre d’avantages par rapport à l’approche conventionnelle dont la possibilité d’augmenter la précision des potentiels de surface et de réduire les exigences informatiques pour les solutions inverses. Dans cette thèse, les équations BEM pour les approches conventionnelle et réciproque sont développées en utilisant une formulation courante, la méthode des résidus pondérés. La réalisation numérique des deux approches pour le problème direct est décrite pour un seul modèle de source dipolaire. Un modèle de tête de trois sphères concentriques pour lequel des solutions analytiques sont disponibles est utilisé. Les potentiels de surfaces sont calculés aux centroïdes ou aux sommets des éléments de discrétisation BEM utilisés. La performance des approches conventionnelle et réciproque pour le problème direct est évaluée pour des dipôles radiaux et tangentiels d’excentricité variable et deux valeurs très différentes pour la conductivité du crâne. On détermine ensuite si les avantages potentiels de l’approche réciproquesuggérés par les simulations du problème direct peuvent êtres exploités pour donner des solutions inverses plus précises. Des solutions inverses à un seul dipôle sont obtenues en utilisant la minimisation par méthode du simplexe pour à la fois l’approche conventionnelle et réciproque, chacun avec des versions aux centroïdes et aux sommets. Encore une fois, les simulations numériques sont effectuées sur un modèle à trois sphères concentriques pour des dipôles radiaux et tangentiels d’excentricité variable. La précision des solutions inverses des deux approches est comparée pour les deux conductivités différentes du crâne, et leurs sensibilités relatives aux erreurs de conductivité du crâne et au bruit sont évaluées. Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus précises pour une conductivité du crâne supposément plus réaliste, les deux approches, conventionnelle et réciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipôles très excentriques. Les approches réciproques produisent le moins de variations en précision des solutions directes pour différentes valeurs de conductivité du crâne. En termes de solutions inverses pour un seul dipôle, les approches conventionnelle et réciproque sont de précision semblable. Les erreurs de localisation sont petites, même pour des dipôles très excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, à cause de la nature non linéaire des solutions inverses pour un dipôle. Les deux approches se sont démontrées également robustes aux erreurs de conductivité du crâne quand du bruit est présent. Finalement, un modèle plus réaliste de la tête est obtenu en utilisant des images par resonace magnétique (IRM) à partir desquelles les surfaces du cuir chevelu, du crâne et du cerveau/liquide céphalorachidien (LCR) sont extraites. Les deux approches sont validées sur ce type de modèle en utilisant des véritables potentiels évoqués somatosensoriels enregistrés à la suite de stimulation du nerf médian chez des sujets sains. La précision des solutions inverses pour les approches conventionnelle et réciproque et leurs variantes, en les comparant à des sites anatomiques connus sur IRM, est encore une fois évaluée pour les deux conductivités différentes du crâne. Leurs avantages et inconvénients incluant leurs exigences informatiques sont également évalués. Encore une fois, les approches conventionnelle et réciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses à un seul dipôle sont robustes de manière inhérente au manque de précision dans les solutions directes, mais dépendent de l’activité superposée d’autres sources neurales. Contrairement aux attentes, les approches réciproques n’améliorent pas la précision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques réduites en temps et en espace sont les avantages principaux des approches réciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale réfractaire qui ont souvent déjà fait un EEG et IRM. / The inverse problem of electroencephalography (EEG) is the localization of current sources within the brain using surface potentials on the scalp generated by these sources. An inverse solution typically involves multiple calculations of scalp surface potentials, i.e., the EEG forward problem. To solve the forward problem, models are needed for both the underlying source configuration, the source model, and the surrounding tissues, the head model. This thesis treats two distinct approaches for the resolution of the EEG forward and inverse problems using the boundary-element method (BEM): the conventional approach and the reciprocal approach. The conventional approach to the forward problem entails calculating the surface potentials starting from source current dipoles. The reciprocal approach, on the other hand, first solves for the electric field at the source dipole locations when the surface electrodes are reciprocally energized with a unit current. A scalar product of this electric field with the source dipoles then yields the surface potentials. The reciprocal approach promises a number of advantages over the conventional approach, including the possibility of increased surface potential accuracy and decreased computational requirements for inverse solutions. In this thesis, the BEM equations for the conventional and reciprocal approaches are developed using a common weighted-residual formulation. The numerical implementation of both approaches to the forward problem is described for a single-dipole source model. A three-concentric-spheres head model is used for which analytic solutions are available. Scalp potentials are calculated at either the centroids or the vertices of the BEM discretization elements used. The performance of the conventional and reciprocal approaches to the forward problem is evaluated for radial and tangential dipoles of varying eccentricities and two widely different skull conductivities. We then determine whether the potential advantages of the reciprocal approach suggested by forward problem simulations can be exploited to yield more accurate inverse solutions. Single-dipole inverse solutions are obtained using simplex minimization for both the conventional and reciprocal approaches, each with centroid and vertex options. Again, numerical simulations are performed on a three-concentric-spheres model for radial and tangential dipoles of varying eccentricities. The inverse solution accuracy of both approaches is compared for the two different skull conductivities and their relative sensitivity to skull conductivity errors and noise is assessed. While the conventional vertex approach yields the most accurate forward solutions for a presumably more realistic skull conductivity value, both conventional and reciprocal approaches exhibit large errors in scalp potentials for highly eccentric dipoles. The reciprocal approaches produce the least variation in forward solution accuracy for different skull conductivity values. In terms of single-dipole inverse solutions, conventional and reciprocal approaches demonstrate comparable accuracy. Localization errors are low even for highly eccentric dipoles that produce large errors in scalp potentials on account of the nonlinear nature of the single-dipole inverse solution. Both approaches are also found to be equally robust to skull conductivity errors in the presence of noise. Finally, a more realistic head model is obtained using magnetic resonance imaging (MRI) from which the scalp, skull, and brain/cerebrospinal fluid (CSF) surfaces are extracted. The two approaches are validated on this type of model using actual somatosensory evoked potentials (SEPs) recorded following median nerve stimulation in healthy subjects. The inverse solution accuracy of the conventional and reciprocal approaches and their variants, when compared to known anatomical landmarks on MRI, is again evaluated for the two different skull conductivities. Their respective advantages and disadvantages including computational requirements are also assessed. Once again, conventional and reciprocal approaches produce similarly small dipole position errors. Indeed, position errors for single-dipole inverse solutions are inherently robust to inaccuracies in forward solutions, but dependent on the overlapping activity of other neural sources. Against expectations, the reciprocal approaches do not improve dipole position accuracy when compared to the conventional approaches. However, significantly smaller time and storage requirements are the principal advantages of the reciprocal approaches. This type of localization is potentially useful in the planning of neurosurgical interventions, for example, in patients with refractory focal epilepsy in whom EEG and MRI are often already performed.
5

Evolution and stability of falling liquid films with thermocapillary effects / Evolution et stabilité de films liquides tombants avec effets thermocapillaires

Scheid, Benoît 15 March 2004 (has links)
This thesis deals with the dynamics of a thin liquid film falling down a heated plate. The heating yields surface tension gradients that induce thermocapillary stresses on the free surface, thus affecting the stability and the evolution of the film. Accounting for the coherence of the flow due to viscosity, two main approaches that reduce the dimensionality of the original problem are usually considered depending on the flow rate (as measured by the Reynolds number): the `long wave' asymptotic expansion for small Reynolds numbers and the `integral boundary layer' approximation for moderate Reynolds numbers. The former suffers from singularities and the latter from incorrectness of the instability threshold for the occurrence of hydrodynamic waves. Thus, the aim of this thesis is twofold: in a first part, we define quantitatively the validity of the `long wave' evolution equation (Benney equation) for the film thickness h including the thermocapillary effect; and in a second part, we improve the `integral boundary layer' approach by combining a gradient expansion to a weighted residual method. <p>In the first part, we further investigate the Benney equation in its validity domain in the case of periodically inhomogeneous heating in the streamwise direction. It induces steady-state deformations of the free surface with increased transfer rate in regions where the film is thinner, and also in average. The inhomogeneities of the heating also modify the nature of travelling wave solutions at moderate temperature gradients and allows for suppressing wave motion at larger ones.<p>Moreover, large temperature gradients (for instance positive ones) in the streamwise direction produce large local film thickening that may in turn become unstable with respect to transverse disturbances such that the flow may organize in rivulet-like structures. The mechanism of such instability is elucidated via an energy analysis. The main features of the rivulet pattern are described experimentally and recovered by direct numerical simulations.<p>In the second part, various models are obtained, which are valid for larger Reynolds numbers than the Benney equation and account for second-order viscous and inertial effects. We then elaborate a strategy to select the optimal model in terms of linear stability properties and existence of nonlinear solutions (solitary waves), for the widest possible range of parameters. This model -- called reduced model -- is a system of three coupled evolution equations for the local film thickness h, the local flow rate q and the surface temperature Ts. Solutions of this model indicate that the interaction of the hydrodynamic and thermocapillary modes is non-trivial, especially in the region of large-amplitude solitary waves.<p>Finally, the three-dimensional evolution of the solutions of the reduced model in the presence of periodic forcing and noise compares favourably with available experimental data in isothermal conditions and with direct numerical simulations in non-isothermal conditions.<p><p>------------------------------------------------<p><p>Cette thèse analyse la dynamique d'un film mince s'écoulant le long d'une paroi chauffée. Le chauffage crée des gradients de tension superficielle qui induisent des tensions thermocapillaires à la surface libre, altérant ainsi la stabilité et l'évolution du film. Grâce à la cohérence de l'écoulement assurée par la viscosité, deux approches permettant de réduire la dimensionnalité du problème original sont habituellement considérées suivant le débit (mesuré par le nombre de Reynolds): l'approximation asymptotique dite `longues ondes' pour les faibles nombres de Reynolds et l'approximation `intégrale couche limite' pour les nombres de Reynolds modérés. Cependant, la première approximation souffre de singularités et la dernière de prédictions imprécises du seuil de stabilité des ondes hydrodynamiques à la surface du film. Le but de cette thèse est donc double: dans une première partie, il s'agit de déterminer, de manière quantitative, la validité de l'équation d'évolution `longues ondes' (ou équation de Benney) pour l'épaisseur du film h, en y incluant l'effet thermocapillaire; et dans une seconde partie, il s'agit d'améliorer l'approche `intégrale couche limite' en combinant un développement en gradients avec une méthode aux résidus pondérés.<p>Dans la première partie, nous étudions l'équation de Benney, dans son domaine de validité, dans le cas d'un chauffage inhomogène et périodique dans la direction de l'écoulement. Cela induit des déformations permanentes de la surface libre avec un accroissement du transfert de chaleur dans les régions où le film est plus mince, mais aussi en moyenne. Un chauffage inhomogène modifie également la nature des solutions d'ondes progressives pour des gradients de températures modérés et conduit même à leur suppression pour des gradients de températures plus importants. De plus, ceux-ci, lorsqu'ils sont par exemple positifs le long de l'écoulement, produisent des épaississements localisés du film qui peuvent à leur tour devenir instables par rapport à des perturbations suivant la direction transverse à l'écoulement. Ce dernier s'organise alors sous forme d'une structure en rivulets. Le mécanisme de cette instabilité est élucidé via une analyse énergétique des perturbations. Les principales caractéristiques des structures en rivulets sont décrites expérimentalement et retrouvées par l'intermédiaire de simulations numériques. <p>Dans la seconde partie, nous dérivons une famille de modèles valables pour des nombres de Reynolds plus grands que l'équation de Benney, qui prennent en compte les effets visqueux et inertiels du second ordre. Nous élaborons ensuite une stratégie pour sélectionner le modèle optimal en fonction de ses propriétés de stabilité linéaire et de l'existence de solutions non-linéaires (ondes solitaires), et ce pour la gamme de paramètres la plus large possible. Ce modèle -- appelé modèle réduit -- est un système de trois équations d'évolution couplées pour l'épaisseur locale de film h, le débit local q et la température de surface Ts. Les solutions de ce modèle indiquent que l'interaction des modes hydrodynamiques et thermocapillaires n'est pas triviale, spécialement dans le domaine des ondes solitaires de grande amplitude. Finalement, l'évolution tri-dimensionnelle des solutions du modèle réduit en présence d'un forçage périodique ou d'un bruit se compare favorablement aux données expérimentales disponibles en conditions isothermes, ainsi qu'aux simulations numériques directes en conditions non-isothermes<p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.0565 seconds