• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 6
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 30
  • 11
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Seismic Imaging of the Global Asthenosphere using SS Precursors

Sun, Shuyang 21 September 2023 (has links)
The asthenosphere, a weak layer beneath the rigid lithosphere, plays a fundamental role in the operation of plate tectonics and mantle convection. While this layer is often characterized by low seismic velocity and high seismic attenuation, the global structure of the asthenosphere remains poorly understood. In this dissertation, twelve years of SS precursors reflected off the top and bottom of the asthenosphere, namely, the LAB and the 220-km discontinuity, are processed to investigate the boundaries of the asthenosphere at a global scale. Finite-frequency sensitivities are used in tomography to account for wave diffraction effects that cannot be modeled in global ray-theoretical tomography. Strong SS precursors reflected off the LAB and the 220-km discontinuity are observed across the global oceans and continents. In oceanic regions, the LAB is characterized by a large velocity drop of about 12.5%, which can be explained by 1.5%-2% partial melt in the oceanic asthenosphere. The depth of the Lithosphere Asthenosphere Boundary is about 120 km, and its average depth is independent of seafloor age. This observation supports the existence of a constant-thickness plate in the global oceans. The base of the asthenosphere is imaged at a depth of about 250 km in both oceanic and continental areas, with a velocity jump of about ∼ 7% across the interface. This finding suggests that the asthenosphere in oceanic and continental regions share the same defining mechanism. The depth perturbations of the oceanic 220-km discontinuity roughly follow the seafloor age contours. The 220-km topography is smoother beneath slower-spreading seafloors while it becomes rougher beneath faster-spreading seafloors. In addition, the roughness of the 220-km discontinuity increases rapidly with spreading rate at slow spreading seafloors, whereas the increase in roughness is much slower at fast spreading seafloors. This observation indicates that the thermal and compositional structures of seafloors formed at spreading centers may have a long-lasting impact on asthenospheric convections. In continental regions, a broad correlation is observed between the 220-km discontinuity depth structure and surface tectonics. For example, the 220-km discontinuity depth is shallower along the southern border of the Eurasian plate as well as the Pacific subduction zones. However, there is no apparent correlation between 3-D seismic wavespeed in the upper mantle and the depths of the 220-km discontinuity, indicating that secular cooling has minimum impact on the base of the asthenosphere. / Doctor of Philosophy / In classic plate tectonic theory, the outermost shell of the Earth consists of a small number of rigid plates (lithosphere) moving horizontally on the mechanically weak asthenosphere. In the classic half space cooling (HSC) model, the lithosphere is formed by gradual cooling of the hot mantle. Therefore, the thickness of the plate depends on the age of the seafloor. The problem with the HSC model is that bathymetry and heat flow measurements at old seafloors do not follow its predicted age dependence. A modified theory, called plate cooling model, can better explain those geophysical observations by assuming additional heat at the base of an oceanic plate with a constant thickness of about 125 km. However, such a constant-thickness plate has not been observed in seismology. In this thesis, the asthenosphere boundaries are imaged using a global dataset of seismic waves reflected off the Earth's internal boundaries. Strong reflections from the top of the asthenosphere are observed across all major oceans. The amplitudes of the SS precursors can be explained by 1.5%-2% of partial melt in the asthenosphere. The average boundary depths are independent of seafloor age, and this observation supports the existence of a constant-thickness plate in the global oceans with a complex origin. The 220-km discontinuity, also called the Lehmann Discontinuity, was incorporated in the Preliminary Reference Earth Model in the 1980's to represent the base of the asthenosphere. However, the presence and nature of this boundary have remained controversial, particularly in the oceanic regions. In contrast to many studies which suggest the 220-km discontinuity does not exist in the global oceans, SS precursors reflected from this interface are observed across the oceanic regions in this thesis. Furthermore, there is a positive correlation between the topography of the 220-km discontinuity and seafloor spreading rate. Specifically, the 220-km discontinuity is smoother beneath slower-spreading seafloors and much rougher beneath faster-spreading seafloors. In addition, the roughness increases faster at slowerspreading seafloors while much more gradual at faster-spreading seafloors. This indicates a close connection between seafloor spreading and mantle convections in the asthenosphere, and seafloors have permanent memories of their birth places. Different melting processes at slow and fast spreading centers produce seafloors with different physical and chemical properties, modulating convections in the asthenosphere and ultimately shaping the topography of the 220-km discontinuity. Reflections from the 220-km discontinuity are also observed across the global continental regions. In addition, the 220-km discontinuity beneath the continents is comparable to that under oceanic regions in terms of their average depth (∼ 250 km) and velocity contrast across the discontinuity (∼ 7%). In continental regions, there is a general connection between the 220-km depth structure and plate tectonics. For example, the boundary is shallower along the southern border of the Eurasian plate from the Mediterranean region to East Asia where mountain belts were formed as a result of collision between the Eurasian plate and the Nubian, Arabian and Indian plates. Depth perturbations of the 220-km discontinuity are also observed along the Pacific subduction zones including the Cascadia Subduction Zone, Peru-Chile Trench and Japan-Kuril Kamchatka Trench. In addition, depth anomalies are mapped in the interior of continents, for example, along the foothills of high topography in the interior of the Eurasian plate, which may be controlled by far-field convection associated with the convergent processes at the plate boundaries.
22

Computational Design of Transparent Polymeric Laminates subjected to Low-velocity Impact

Antoine, Guillaume O. 07 November 2014 (has links)
Transparent laminates are widely used for body armor, goggles, windows and windshields. Improved understanding of their deformations under impact loading and of energy dissipation mechanisms is needed for minimizing their weight. This requires verified and robust computational algorithms and validated mathematical models of the problem. Here we have developed a mathematical model for analyzing the impact response of transparent laminates made of polymeric materials and implemented it in the finite element software LS-DYNA. Materials considered are polymethylmethacrylate (PMMA), polycarbonate (PC) and adhesives. The PMMA and the PC are modeled as elasto-thermo-visco-plastic and adhesives as viscoelastic. Their failure criteria are stated and simulated by the element deletion technique. Values of material parameters of the PMMA and the PC are taken from the literature, and those of adhesives determined from their test data. Constitutive equations are implemented as user-defined subroutines in LS-DYNA which are verified by comparing numerical and analytical solutions of several initial-boundary-value problems. Delamination at interfaces is simulated by using a bilinear traction separation law and the cohesive zone model. We present mathematical and computational models in chapter one and validate them by comparing their predictions with test findings for impacts of monolithic and laminated plates. The principal source of energy dissipation of impacted PMMA/adhesive/PC laminates is plastic deformations of the PC. In chapter two we analyze impact resistance of doubly curved monolithic PC panels and delineate the effect of curvature on the energy dissipated. It is found that the improved performance of curved panels is due to the decrease in the magnitude of stresses near the center of impact. In chapter three we propose constitutive relations for finite deformations of adhesives and find values of material parameters by considering test data for five portions of cyclic loading. Even though these values give different amounts of energy dissipated in the adhesive, their effect on the computed impact response of PMMA/adhesive/PC laminates is found to be minimal. In chapter four we conduct sensitivity analysis to identify critical parameters that significantly affect the energy dissipated. The genetic algorithm is used to optimally design a transparent laminate in chapter five. / Ph. D.
23

Chemical and physical behaviour of the trace elements in the silicate melts of the Earth's mantle / Comportement chimique et physique des éléments traces dans les silicates fondus du manteau terrestre

Seclaman, Alexandra Catalina 01 April 2016 (has links)
Nous avons étudié des magmas ferrifères silicatés magnésiens à la pression du manteau terrestre en utilisant la dynamique moléculaire (First Principles Molecular Dynamics). Les résultats de l’équation d’état que nous avons obtenus à partir de nos simulations ont été utilisés pour créer un modèle chimique et minéralogique pour les zones de très basse vitesse sismique (ULVZ, anomalies régionales dans le manteau proche de la limite noyau-manteau). De plus, nous avons étudié le comportement du Ni, du Co et du Fe dans ces magmas et établi la dépendance du spin en fonction de la concentration, de la pression, de la température et du degré de polymérisation du magma silicaté. Nous avons montré qu’une baisse du spin moyen peut être corrélée au changement de pente (kink) observé précédemment pour les coefficients de partage du Ni et du Co. Nous avons analysé la structure du magma pour toutes les compositions étudiées en fonction de la pression. Nos résultats donnent un nouvel aperçu de la coordination des éléments majeurs et traces dans les magmas silicatés de différents degrés de polymérisation. Nous interprétons l’anomalie de coordination Ni-O en fonction de la pression comme un changement d’état de spin. L’effet de la polymérisation du magma silicaté sur les coefficients de partage du Co, du Ni et du W entre le métal et le magma silicaté a été étudié par expériences multi-enclumes en conditions isobares et isothermes. Nous avons réalisé des simulations FPMD de magmas à des degrés de polymérisation similaires aux expériences afin d’expliquer le caractère de plus en plus lithophile du W lorsque le degré de polymérisation du magma silicaté diminue. Nous proposons une explication structurale pour expliquer l’affinité décroissante apparente du W dans les magmas silicatés dépolymérisés. / We explore Fe-bearing Mg-silicate melts through the pressure regime of the Earth’s mantle using First Principles Molecular Dynamics (FPMD). The equation of state results we obtained from our simulations are used to create a chemical and mineralogical model for Ultra-Low Velocity Zones (anomalous region on the mantle side of the core-mantle boundary). Furthermore we study the behaviour of Ni, Co, and Fe in these melts, and asses their spin-crossover dependencies on their concentration, pressure, temperature, and the degree of polymerization of the silicate melts. We show that a decrease in the average spin can be correlated with the previously observed kink in the partitioning coefficient of Ni and Co. We investigate the melt structure of all the compositions studied as a function of pressure. Our results provide new insight into the coordination of major and trace elements in silicate melts with different degrees of polymerization. We interpret the anomalous Ni-O coordination trend with pressure as the result of the spin state change. The effect of silicate melt polymerization on the partitioning of Co, Ni, and W between a metal and silicate melt, is investigated at isobaric and isothermic conditions using multi-anvil experiments. We have performed FPMD simulations of melts with similar degrees of polymerization as the experiments in order to explain the increasing lithophile character of W with the decrease in polymerization of the silicate melt. We propose a structural explanation for tungsten’s apparent increased affinity for depolymerized silicate melts.
24

Simulace průrazů kompozitních panelů / Numerical simulations of low velocity impact on composite panels

Odehnal, Ondřej January 2017 (has links)
This master thesis focuses on modelling and simulation of impact tests of composite panels. Simulations and analysis were made by using Finite Element Method in software MSC Patran and Dytran. The first part of the thesis deals with describing the properties of composite panels during impact testing and other cases of impacts on composite structures. Next part deals with the used models and results from Dytran. These results are compared with experimental data from real low-velocity impact tests. Part of the thesis is devoted to impact on panels with the stacking sequences which is supposed to be used for design of air duct for airplane Aero L-39NG.
25

Damage resistance and tolerance investigation of carbon/epoxy skinned honeycomb sandwich panels

Hill, Michelle Denise January 2007 (has links)
This thesis documents the findings of a three year experimental investigation into the impact damage resistance and damage tolerance of composite honeycomb sandwich panels. The primary area of work focuses on the performance of sandwich panels under quasi-static and low-velocity impact loading with hemispherical and flat-ended indenters. The damage resistance is characterised in terms of damage mechanisms and energy absorption. The effects of varying the skin and core materials, skin thickness, core density, panel boundary conditions and indenter shape on the transverse strength and energy absorption of a sandwich panel have been examined. Damage mechanisms are found to include delamination of the impacted skin, core crushing, limited skin-core de bonding and top skin fibre fracture at high loads. In terms of panel construction the skin thickness is found to dominate the panel strength and energy absorption with core density having a lesser influence. Of the external factors considered the indenter noseshape has the largest effect on both failure load and associated damage area. An overview of existing analytical prediction methods is also included and the most significant theories applied and compared with the experimental results from this study. The secondary area of work expands the understanding obtained from the damage resistance study and assesses the ability of a sandwich panel to withstand in-plane compressive loading after sustaining low-velocity impact damage. The importance of the core material is investigated by comparing the compression-after-impact strength of both monolithic carbon-fibre laminates and sandwich panels with either an aluminium or nomex honeycomb core. The in-plane compressive strength of an 8 ply skinned honeycomb sandwich panel is found to be double that of a 16 ply monolithic laminate, with the type of honeycomb also influencing the compressive failure mechanisms and residual compressive strength. It is concluded that under in-plane loading the stabilising effect of the core opposes the de-stabilising effect of any impact damage.
26

Ply clustering effect on composite laminates under low-velocity impact using FEA

Liu, Hongquan 01 1900 (has links)
With the development of the design and manufacture technology, composite materials are widely used in the aeronautical industry. But, one of the main concerns which affects the application of composites is foreign object impact. The damages induced by the Low Velocity Impact (LVI), which can significantly reduce the strength of the structures, can’t be easily inspected routinely. The so-called Barely Visible Impact Damages (BVID) due to LVI typically includes interlaminar delamination, matrix cracks and fibre fracture at the back face. Previous researches have shown that the results of LVI test are similar to that of the Quasi-Static Load (QSL) test. The initiation and propagation of delamination can be detected more easily in the QSL test and the displacement and reaction force of the impactor can be controlled and measured much more accurately. Moreover, it is easier to model QSL tests than dynamic impacts. To investigate the impact damage induced by LVI, a Finite Element (FE) model employing cohesive elements was used. At the same time, the ply clustering effect, when several plies of the same orientation were stack together, was modelled in the FE model in terms of damage resistance and damage size. A bilinear traction-separation law was introduced in the cohesive elements employed to simulate the initiation and propagation of the impact damage and delamination. Firstly, a 2D FE model of the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens were built using the commercial FEM software ABAQUS. The results have shown that the cohesive elements can be used to simulate mode I and mode II delamination sufficiently and correctly. Secondly, an FE model of a composite plate under QSL but without simulating damage was built using the continuum shell elements. Agreement between the FEA results with published test results is good enough to validate the capability of continuum shell elements and cohesive elements in modelling the composite laminate under the transverse load condition (QSL). Thirdly, an FE model containing discrete interface delamination and matrix cracks at the back face of the composite plate was built by pre-setting the cohesive failure elements at potential damage locations according to the experimental observation. A cross-ply laminate was modelled first where fewer interfaces could be delaminated. Good agreement was found in terms of the delamination area and impactor’s displacement-force curve. Finally, the effect of ply clustering on impact damage resistance was studied using Quasi-Isotropic (QI) layup laminates. Because of the limited time available for calculation, the simulation was only partly completed for the quasi-isotropic laminates (L2 configuration) which have more delaminated interfaces. The results showed that cohesive elements obeying the bilinear traction-separation law were capable of predicting the reaction force in quasi-isotropic laminates. However, discrepancies with the test results in terms of delamination area were observed for quasi-isotropic laminates. These discrepancies are mainly attributed to the simplification of matrix cracks simulation and compressive load at the interface in the thickness direction which is not taken into account.
27

Design Of An Advanced Composite Shell For Helicopter Pilot Helmets

Sunel, Ezgi 01 February 2012 (has links) (PDF)
This thesis reports on a design study, conducted for an advanced composite helmet shell for helicopter pilots. The helmet shell is expected to provide a level of protection against low velocity impacts with its weight criteria. Therefore, ergonomy, light weight, and the ability to withstand low velocity impact became the main issues for this study. For this purpose, an experimental program has been developed including low velocity impact tests on specimens. The drop height, drop weight, specimen stacking sequences and size were constant parameters. Test specimens were produced using the plate size of 220x220 mm having different thicknesses. Specimen materials were aramid, carbon, and a hybrid form of these two. Thus, the parameters of the study were specimen thickness and the material types. The impact tests are carried out on a specially designed test rig. The design decisions are made in accordance with the results of the experiments. In compliance with the lightweight and manufacturing criteria, the hybrid specimen was selected helmet shell. For the purpose of ergonomy a geometric design was also conducted from headfrom sizes of Turkish Army by using 3D design software. After specifying the composite material, manufactured helmet shell was tested in another test rig according to the ANSI Z90.1.1992. For the requirement of the acceleration level 300g, the helmet shell design was found to be successful at seven different and critical impact points.
28

Extreme Seismic Anomalies near Earth’s Core Mantle Boundary

January 2020 (has links)
abstract: The interior of Earth is stratified due to gravity. Therefore, the lateral heterogeneities observed as seismic anomalies by seismologists are extremely interesting: they hold the key to understand the composition, thermal status and evolution of the Earth. This work investigates seismic anomalies inside Earth’s lowermost mantle and focuses on patch-like ultra-low velocity zones (ULVZs) found on Earth’s core-mantle boundary (CMB). Firstly, all previous ULVZ studies are compiled and ULVZ locations on the CMB are digitized. The result is a database, which is publicly available online. A key finding is that there is not a simple mapping between the locations of the observed ULVZs and the large low velocities provinces (LLVPs). Instead, ULVZs are more likely to occur near LLVP boundaries. This spatial correlation study supports a compositionally distinct origin for at least some ULVZs. Next, the seismic structure of the basal mantle beneath the Central America is investigated. This region hosts present and past subducted slabs, which could have brought compositionally distinct oceanic basalt all the way down to the CMB. The waveform distortions of a core-reflected seismic phase and a forward modeling method are used to constrain the causes of the CMB structures. In addition to ULVZ structures, isolated patches of thin zones with shear velocity increased by over 10% relative to background mantle are found for the first time. Ultra-high velocity zones (UHVZs) are interspersed with ULVZs and could be caused by subducted mid-ocean ridge basalt (MORB) that undergoes partial melting and melt segregation. Fe-rich partial melt of MORB can form ULVZs, and silica polymorphs (SiO2) and calcium-perovskite (CaPv) rich solid residue can explain the UHVZs. Finally, large-scale heterogeneities in the lowermost mantle are investigated using S waveform broadening observations. Several basal layer models are case-studied via synthetic calculations. S wave arrivals received at a distance larger than 80˚ in a global dataset from large earthquakes between the years 1994 and 2017 are examined and S waveform broadenings are documented. This approach exploits large distance data for the first time, and therefore is complementary to previous studies in terms of sampling locations. One possible explanation of S waveform broadening is velocity discontinuity inside the D″ layer due to the temperature controlled Bm-pPv phase transition. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2020
29

Low Velocity Impact Analysis of Composite Laminated Plates

Zheng, Daihua January 2007 (has links)
No description available.
30

Green Technologies and Sensor Networks for BMP Evaluation in Stormwater Retention Ponds and Wetlands.

Crawford, Anthony 01 January 2014 (has links)
The aim of this thesis is to examine and develop new techniques in stormwater Best Management Practices (BMP) for nutrient and erosion reduction and monitoring by incorporation of low impact green technologies and sensor networks. Previous research has found excessive nutrient loading of nitrogen and phosphorus species from urban stormwater runoff can lead to ecological degradation and eutrophication of receiving lakes and rivers (Fareed and Abid, 2005). In response, the Florida Department of Environmental Protection (FDEP) has set forth reduction goals as established in Total Maximum Daily Load (TMDL) reports to reduce nutrient loading and restore, or maintain, Florida water bodies to reasonable conditions. Often times current stormwater management practices are not sufficient to attain these goals and further improvements in system design are required. In order to reach these goals, affordable technologies designed for both nutrient reduction and monitoring of system performance to deepen and improve our understanding of stormwater processes are required. Firstly this thesis examines the performance of three types of continuous-cycle Media Bed Reactors (MBRs) using Bio-activated Adsorptive Media (BAM) for nutrient reduction in three retention ponds located throughout the Central Florida region. Chapter 2 examines the use of a Sloped and Horizontal MBRs arranged in a baffling configuration, whereas Chapter 3 examines the field performance of a Floating MBR arranged in an upflow configuration. Each MBR was analyzed for performance in reducing total phosphorus, soluble reactive phosphorus, total nitrogen, organic nitrogen, ammonia, nitrates + nitrites, turbidity and chlorophyll a species as measured from the influent to effluent ends of the MBR. The results of the experiments indicate that MBRs may be combined with retention ponds to provide "green technology" alternatives for inter-event treatment of nutrient species in urban stormwater runoff by use of recyclable sorption media and solar powered submersible pumps. Secondly the thesis focusses on three new devices for BMP monitoring which may be integrated into wireless networks, including a Groundwater Variable Probe (GVP) for velocity, hydraulic conductivity and dispersion measurements in a retention pond bank (Chapter 4), an affordable Wireless Automated Sampling Network (WASN) for sampling and analysis of nutrient flux gradients in retention ponds (Chapter 5), and finally an Arc-Type Automated Pulse Tracer Velocimeter (APTV) for low velocity and direction surface water measurements in retention ponds and constructed wetlands (Chapter 6). The GVP was integrated with other environmental sensing probes to create a remote sensing station, capable of real-time data analysis of sub-surface conditions including soil moisture, water table stage. Such abilities, when synced with user control capabilities, may help to increase methods of monitoring for applications including erosion control, bank stability predictions, monitoring of groundwater pollutant plume migration, and establishing hydraulic residence times through subsurface BMPs such as permeable reactive barriers. Advancement of this technology may be used by establishing additional sub-stations, thereby creating sensing networks covering broader areas on the kilometer scale. Two methods for velocity calculation were developed for the GVP for low flow (Pe < 0.2) and high flow (Pe > 0.6) conditions. The GVP was found to operate from a 26-505 cmd-1 range in the laboratory to within ±26% of expected velocities for high-flow conditions and effectively measure directional flow angles to within ±14° of expected. Hydraulic conductivity measurements made by the GVP were confirmed to within ±12% as compared to laboratory measurements. The GVP was found capable of measuring the dispersion coefficient in the laboratory, however turbulent interferences caused during injection was found to occur. Further advancement of the technology may be merited to improve dispersion coefficient measurements. Automated water sampling can provide valuable information of the spatial and temporal distribution of pollutant loading in surface water environments. This ability is expanded with the development of the WASN, providing an affordable, ease-of-use method compared to conventional automated water samplers currently on the market. The WASN was found to effectively operate by text activation via GSM cellular networks to an activation module. Propagation of the signal was distributed to collection units via XBee modules operating on point-to-point star communication using an IEEE 802.15.4 protocol. Signal communications effectively transmitted in the field during a storm event to within a range of 200 feet and collected 50 ±4 ml samples at synced timed increments. A tracer study confirmed that no mixing of samples occurs when a factor of safety of 2 is applied to flush times. This technology provides similar abilities to current market devices at down to 10% of the cost, thereby allowing much more sampling locations for a similar budget. The Arc-Type APTV is useful in establishing both low range horizontal velocity fields and expanding low range velocity measurements below detection ranges of mechanical velocity meters. Installation of a field station showed system functionality, which may be integrated with other environmental sensing probes for surface water testing. This may assist in nutrient distribution analysis and understanding the complex behavior of hydraulic retention times within wetland systems. The device was found to work effectively in both lab and field environments from a 0.02 – 5.0 cms-1 range and measure velocity within approximately ±10% of an acoustic Doppler velocimeter and within an average of ±10° of directional measurements. A drop in accuracy was measured for velocity ranges > 4.5 cms-1. The field station operated on 3G CDMA cellular network two-way communication by installation of a Raven cellular modem. Use of LoggerNet software allowed control and data acquisition from anywhere with an internet connection. This thesis also introduces brief discussions on expanding these "point" measurement technologies into sensing networks. Installation of sub-stations with communication protocols to one central master node station may broaden the sensing system into much larger kilometer-scale ranges, thus allowing large spatial analysis of environmental conditions. Such an integration into controllable sensing networks may help bridge the gap and add calibration and verification abilities between fine-resolution "point" measurements and large scale technologies such as Electrical Resistivity Tomography and satellite remote sensing. Furthermore, application of sensing networks may assist in calibration and verification of surface and groundwater models such as ModFlow, SVFlux and FEHM.

Page generated in 0.0433 seconds