• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 69
  • 42
  • 33
  • 23
  • 13
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 448
  • 448
  • 89
  • 88
  • 67
  • 63
  • 63
  • 46
  • 43
  • 39
  • 35
  • 31
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

INDOOR-WIRELESS LOCATION TECHNIQUES AND ALGORITHMS UTILIZING UHF RFID AND BLE TECHNOLOGIES

Whitney, Ann M. 01 January 2019 (has links)
The work presented herein explores the ability of Ultra High Frequency Radio Frequency (UHF RF) devices, specifically (Radio Frequency Identification) RFID passive tags and Bluetooth Low Energy (BLE) to be used as tools to locate items of interest inside a building. Localization Systems based on these technologies are commercially available, but have failed to be widely adopted due to significant drawbacks in the accuracy and reliability of state of the art systems. It is the goal of this work to address that issue by identifying and potentially improving upon localization algorithms. The work presented here breaks the process of localization into distance estimations and trilateration algorithms to use those estimations to determine a 2D location. Distance estimations are the largest error source in trilateration. Several methods are proposed to improve speed and accuracy of measurements using additional information from frequency variations and phase angle information. Adding information from the characteristic signature of multipath signals allowed for a significant reduction in distance estimation error for both BLE and RFID which was quantified using neural network optimization techniques. The resulting error reduction algorithm was generalizable to completely new environments with very different multipath behavior and was a significant contribution of this work. Another significant contribution of this work is the experimental comparison of trilateration algorithms, which tested new and existing methods of trilateration for accuracy in a controlled environment using the same data sets. Several new or improved methods of triangulation are presented as well as traditional methods from the literature in the analysis. The Antenna Pattern Method represents a new way of compensating for the antenna radiation pattern and its potential impact on signal strength, which is also an important contribution of this effort. The performance of each algorithm for multiple types of inputs are compared and the resulting error matrix allows a potential system designer to select the best option given the particular system constraints.
122

On the Coordinated Use of a Sleep Mode in Wireless Sensor Networks: Ripple Rendezvous

van Coppenhagen, Robert Lindenberg, robert.vancoppenhagen@dsto.defence.gov.au January 2006 (has links)
It is widely accepted that low energy consumption is the most important requirement when designing components and systems for a wireless sensor network (WSN). The greatest energy consumer of each node within a WSN is the radio transceiver and as such, it is important that this component be used in an extremely energy e±cient manner. One method of reducing the amount of energy consumed by the radio transceiver is to turn it off and allow nodes to enter a sleep mode. The algorithms that directly control the radio transceiver are traditionally grouped into the Medium Access Control (MAC) layer of a communication protocol stack. This thesis introduces the emerging field of wireless sensor networks and outlines the requirements of a MAC protocol for such a network. Current MAC protocols are reviewed in detail with a focus on how they utilize this energy saving sleep mode as well as performance problems that they suffer from. A proposed new method of coordinating the use of this sleep mode between nodes in the network is specifed and described. The proposed new protocol is analytically compared with existing protocols as well as with some fundamental performance limits. The thesis concludes with an analysis of the results as well as some recommendations for future work.
123

Svärdsjöstugan och Corvus corones plats : Utveckling i centrum

Gustavsson, Sofia January 2010 (has links)
No description available.
124

Structure determination by low energy electron diffraction of GaN films on 6H-SiC(0001) substrate by molecular beam epitaxy

Ma, King-man, Simon. January 2005 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
125

Multi-dimensional approach used for energy and indoor climate evaluation applied to a low-energy building

Karlsson, Fredrik January 2006 (has links)
The building sector alone accounts for almost 40% of the total energy demand and people spend more than 80% of their time indoors. Reducing energy demand in buildings is essential to the achievement of a sustainable built environment. At the same time, it is important to not deteriorate people’s health, well-being and comfort in buildings. Thus, designing healthy and energy-efficient buildings is one of the most challenging tasks. Evaluation of buildings with a broad perspective can give further opportunities for energy savings and improvement of the indoor climate. The aim of this thesis is to understand the functionality, regarding indoor climate and energy performance, of a low-energy building. To achieve this, a multi-dimensional approach is used, which means that the building is investigated from several points of views and with different methods. A systems approach is applied where the definition of the system, its components and the border to its environment, is essential to the understanding of a phenomenon. Measurement of physical variables, simulations, and qualitative interviews are used to characterize the performance of the building. Both energy simulation and computational fluid dynamic simulations are used to analyse the energy performance at the building level as well as the indoor climate at room level. To reveal the environmental impact of the low-energy building studied in this thesis the CO2 emissions and embodied energy have been investigated regarding different surrounding energy systems. The evaluated building is situated at the west coast of Sweden and uses about 50% of energy compared to a comparable ordinary Swedish building. The building is well-insulated and an air-to-air heat exchanger is used to minimise the heat losses through ventilation. The houses are heated mainly by the emissions from the household appliances, occupants, and by solar irradiation. During cold days an integrated electrical heater of 900 W can be used to heat the air that is distributed through the ventilation system. According to measurements and simulations, the ventilation efficiency and thermal environment could be further improved but the occupants are mostly satisfied with the indoor climate. The control of the heating system and the possibility for efficient ventilation during summertime are other important issues. This was found through quantitative measurements, simulations and qualitative interviews. The low-energy building gives rise to lower CO2 emissions than comparable buildings, but another energy carrier, such as district heating or biofuel, could be used to further improve the environmental performance of the building. The total energy demand, including the embodied energy, is lower than for a comparable building. To understand the functionality of a low-energy building both the technical systems and the occupants, who are essential for low-energy buildings, partly as heat sources but mainly as users of the technical systems, should be included in the analysis.
126

An Experimental Study on the Dynamics of a Single Droplet Vapor Explosion

Concilio Hansson, Roberta January 2010 (has links)
The present study aims to develop a mechanistic understanding of the thermal-hydraulic processes in a vapor explosion, which may occur in nuclear power plants during a hypothetical severe accident involving interactions of high-temperature corium melt and volatile coolant. Over the past several decades, a large body of literature has been accumulated on vapor explosion phenomenology and methods for assessment of the related risk. Vapor explosion is driven by a rapid fragmentation of high temperaturemelt droplets, leading to a substantial increase of heattransfer areas and subsequent explosive evaporation of the volatile coolant. Constrained by the liquid-phase coolant, the rapid vapor production in the interaction zone causes pressurization and dynamic loading on surrounding structures. While such a general understanding has been established, the triggering mechanism and subsequent dynamic fine fragmentation have yet not been clearly understood. A few mechanistic fragmentation models have been proposed, however, computational efforts to simulate the phenomena generated a large scatter of results. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) are investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). After an elaborate image processing, the SHARP images depict the evolution of both melt material (dispersal) and coolant (bubble dynamics), and their microscale interactions, i.e. the triggering phenomenology. The images point to coolant entrainment into the droplet surface as the mechanism for direct contact/mixing ultimately responsible for energetic interactions. Most importantly, the MISTEE data reveals an inverse correlation between the coolant temperature and the molten droplet deformation/prefragmentation during the first bubble dynamics cycle. The SHARP observations followed by further analysis leads to a hypothesis about a novel phenomenon called pre-conditioning, according to which dynamics of the first bubble-dynamics cycle and the ability of the melt drop to deform/pre-fragment dictate the subsequent explosivity of the so-triggered droplet. The effect of non-condensable gases on the perceived mechanisms was investigated on the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning and interaction energetics. Analysis showed twomain aspects when compared to the MISTEE test series (withoutentrapped air). First, the investigation showed that the meltpreconditioning still strongly depends on the coolant subcooling. Second,in respect to the energetics, the tests consistently showed a reducedconversion ratio compared to that of the MISTEE test series. The effect of the melt material in the steam explosion triggerability was also summoned, since it would in principle directly implicate the melt preconditioning. Since a number of the thermo-physical properties of the material would influence the triggering process, we focused on the material properties by using the same dioxide material with difference concentrations, i.e. eutectic and non-eutectic. Unfortunately, due to the high melt superheat the possible differences were not perceived. Thus, inaddition to other materials, lower melt superheat tests were schedule inthe future. / QC 20101110
127

Finite Field Multiplier Architectures for Cryptographic Applications

El-Gebaly, Mohamed January 2000 (has links)
Security issues have started to play an important role in the wireless communication and computer networks due to the migration of commerce practices to the electronic medium. The deployment of security procedures requires the implementation of cryptographic algorithms. Performance has always been one of the most critical issues of a cryptographic function, which determines its effectiveness. Among those cryptographic algorithms are the elliptic curve cryptosystems which use the arithmetic of finite fields. Furthermore, fields of characteristic two are preferred since they provide carry-free arithmetic and at the same time a simple way to represent field elements on current processor architectures. Multiplication is a very crucial operation in finite field computations. In this contribution, we compare most of the multiplier architectures found in the literature to clarify the issue of choosing a suitable architecture for a specific application. The importance of the measuring the energy consumption in addition to the conventional measures for energy-critical applications is also emphasized. A new parallel-in serial-out multiplier based on all-one polynomials (AOP) using the shifted polynomial basis of representation is presented. The proposed multiplier is area efficient for hardware realization. Low hardware complexity is advantageous for implementation in constrained environments such as smart cards. Architecture of an elliptic curve coprocessor has been developed using the proposed multiplier. The instruction set architecture has been also designed. The coprocessor has been simulated using VHDL to very the functionality. The coprocessor is capable of performing the scalar multiplication operation over elliptic curves. Point doubling and addition procedures are hardwired inside the coprocessor to allow for faster operation.
128

Svärdsjöstugan och Corvus corones plats : Utveckling i centrum

Gustavsson, Sofia January 2010 (has links)
No description available.
129

Finite Field Multiplier Architectures for Cryptographic Applications

El-Gebaly, Mohamed January 2000 (has links)
Security issues have started to play an important role in the wireless communication and computer networks due to the migration of commerce practices to the electronic medium. The deployment of security procedures requires the implementation of cryptographic algorithms. Performance has always been one of the most critical issues of a cryptographic function, which determines its effectiveness. Among those cryptographic algorithms are the elliptic curve cryptosystems which use the arithmetic of finite fields. Furthermore, fields of characteristic two are preferred since they provide carry-free arithmetic and at the same time a simple way to represent field elements on current processor architectures. Multiplication is a very crucial operation in finite field computations. In this contribution, we compare most of the multiplier architectures found in the literature to clarify the issue of choosing a suitable architecture for a specific application. The importance of the measuring the energy consumption in addition to the conventional measures for energy-critical applications is also emphasized. A new parallel-in serial-out multiplier based on all-one polynomials (AOP) using the shifted polynomial basis of representation is presented. The proposed multiplier is area efficient for hardware realization. Low hardware complexity is advantageous for implementation in constrained environments such as smart cards. Architecture of an elliptic curve coprocessor has been developed using the proposed multiplier. The instruction set architecture has been also designed. The coprocessor has been simulated using VHDL to very the functionality. The coprocessor is capable of performing the scalar multiplication operation over elliptic curves. Point doubling and addition procedures are hardwired inside the coprocessor to allow for faster operation.
130

Probabilistic CMOS (PCMOS) in the Nanoelectronics Regime

Ayhan, Pinar 23 August 2007 (has links)
Motivated by the necessity to consider probabilistic approaches to future designs, the main objective of this thesis was to develop and characterize energy efficient probabilistic CMOS (PCMOS) circuits that can be used to implement low energy computing platforms. The simplest circuit characterized was a PCMOS inverter (switch). An analytical model relating the energy consumption per switching (E) of this switch to its probability of correctness, p was derived. This characterization can also be used to evaluate the energy and performance savings that are achieved by PCMOS switch based computing platforms. The characterization of a PCMOS inverter was also extended to larger circuits whose probabilistic behavior was analyzed by first developing probability models of primitive gates, which were then input to a graph-based model to find the probabilities of larger circuits. The analysis of larger probabilistic circuits provides a basis for analyzing probabilistic behaviors due to noise in future technologies, and can be used in probabilistic design and synthesis methods to improve circuit reliability. Another important design criterion is the speed of a PCMOS circuit. The trade-offs between the energy, speed, and p of PCMOS circuits were also analyzed. Based on this study, various methods were proposed to optimize energy delay product (EDP) and p under given constraints on p, performance, and EDP. The sensitivity of the analysis with respect to variations in temperature, supply voltage, and threshold voltage was also considered.

Page generated in 0.0686 seconds