• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 12
  • 12
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuidade de atratores para problemas parabólicos semilineares com difusibilidade grande localizada / Continuity of attrators for semilinear parabolic problems with localized large diffusion

Silva, Karina Schiabel 30 March 2006 (has links)
Neste trabalho estudamos comportamento assintótico de problemas parabólicos semilineares do tipo ut ¡div(p(x)Nu)+l u = h(u) em um domí?nio limitado e suave W ½ Rn, com condições de Neumann na fronteira, quando o coeficiente de difusão p se torna grande em uma sub-região W0 que é interior ao domí?nio físico W. Provamos que, sob determinadas hipóteses, a família de atratores se comporta semicontinuamente inferior e superiormente quando a difusão explode em W0 / In this work we study the asymptotic behavior of semilinear parabolic problems of the form ut ¡div(p(x)Ñu)+l u = h(u) in a bounded smooth domain W ½ Rn and Neumann boundary conditions when the diffusion coefficient p becomes large in a subregion W0 which is interior to the physical domain W. We prove, under suitable assumptions, that the family of attractors behave upper and lowersemicontinuously as the diffusion blows up in W0.
2

Lower semicontinuity and relaxation in BV of integrals with superlinear growth

Soneji, Parth January 2012 (has links)
No description available.
3

Continuidade de atratores para problemas parabólicos semilineares com difusibilidade grande localizada / Continuity of attrators for semilinear parabolic problems with localized large diffusion

Karina Schiabel Silva 30 March 2006 (has links)
Neste trabalho estudamos comportamento assintótico de problemas parabólicos semilineares do tipo ut ¡div(p(x)Nu)+l u = h(u) em um domí?nio limitado e suave W ½ Rn, com condições de Neumann na fronteira, quando o coeficiente de difusão p se torna grande em uma sub-região W0 que é interior ao domí?nio físico W. Provamos que, sob determinadas hipóteses, a família de atratores se comporta semicontinuamente inferior e superiormente quando a difusão explode em W0 / In this work we study the asymptotic behavior of semilinear parabolic problems of the form ut ¡div(p(x)Ñu)+l u = h(u) in a bounded smooth domain W ½ Rn and Neumann boundary conditions when the diffusion coefficient p becomes large in a subregion W0 which is interior to the physical domain W. We prove, under suitable assumptions, that the family of attractors behave upper and lowersemicontinuously as the diffusion blows up in W0.
4

Lower Semicontinuity and Young Measures for Integral Functionals with Linear Growth

Johan Filip Rindler, Johan Filip January 2011 (has links)
No description available.
5

Semicontinuidade inferior de atratores para problemas parabólicos em domínios finos / Lower semicontinuity of attactors for parabolic problems in thin domains

Silva, Ricardo Parreira da 30 October 2007 (has links)
Neste trabalho estudamos problemas de reação-difusão semilineares do tipo \'u IND..t(x, t) = \'DELTA\'u(x, t)+ f (u(x, t)), x \'PERTENCE A\' \'OMEGA\' \'PARTIAL\' U/\'PARTIAL\'V (x, t) = 0, x \'PERTENCE A\' \'PARTIAL\'\' OMEGA\'. Desenvolvemos uma teoria abstrata para a obtenção da continuidade da dinâmica assintótica de (P) sob perturbações singulares do domínio espacial W e aplicamos a uma série de exemplos dos assim chamados domínios finos / In this work we study semilinear reaction-diffusion problems of the type \'u IND.t(x, t) = \'DELTA\'u(x, t)+ f (u(x, t)), x \' PERTENCE A\' \'OMEGA\' \'PARTIAL\'u/\'ARTIAL\' v (x, t) = 0, x \"PERTENCE A\' \'PARTIAL\' \' OMEGA\' We develop a abstract theory to obtain the continuity of the asymptotic dynamics of (P) under singular perturbations of the spatial domain W and we apply that to many examples in thin domains
6

Semicontinuidade inferior de atratores para problemas parabólicos em domínios finos / Lower semicontinuity of attactors for parabolic problems in thin domains

Ricardo Parreira da Silva 30 October 2007 (has links)
Neste trabalho estudamos problemas de reação-difusão semilineares do tipo \'u IND..t(x, t) = \'DELTA\'u(x, t)+ f (u(x, t)), x \'PERTENCE A\' \'OMEGA\' \'PARTIAL\' U/\'PARTIAL\'V (x, t) = 0, x \'PERTENCE A\' \'PARTIAL\'\' OMEGA\'. Desenvolvemos uma teoria abstrata para a obtenção da continuidade da dinâmica assintótica de (P) sob perturbações singulares do domínio espacial W e aplicamos a uma série de exemplos dos assim chamados domínios finos / In this work we study semilinear reaction-diffusion problems of the type \'u IND.t(x, t) = \'DELTA\'u(x, t)+ f (u(x, t)), x \' PERTENCE A\' \'OMEGA\' \'PARTIAL\'u/\'ARTIAL\' v (x, t) = 0, x \"PERTENCE A\' \'PARTIAL\' \' OMEGA\' We develop a abstract theory to obtain the continuity of the asymptotic dynamics of (P) under singular perturbations of the spatial domain W and we apply that to many examples in thin domains
7

Integrais concentradas na fronteira e aplicações para problemas elípticos semilineares / Concentrating integrals and applications for semilinear elliptic problems

Nogueira, Ariadne 09 August 2017 (has links)
Neste trabalho estudamos propriedades de integrais concentradas, ou seja, integrais cujo integrando atua apenas em uma vizinhança do domínio em questão. Tais termos são utilizados para conhecer o comportamento do integrando em regiões cuja medida de Lebesgue se aproxima de zero quando um parâmetro tende a zero. Ilustraremos estes resultados abstratos através de duas aplicações, ambas em domínios Lipschitz de R2, onde adicionamos um termo de concentração em problemas semilineares elípticos: domínio com fronteira oscilante que tende a um domínio limite fixo; e domínio do tipo fino com fronteira oscilante. Em ambos os casos, provamos a semicontinuidade superior e inferior da família de soluções dos problemas. / In this work we study concentrating integrals properties, in other words, we analyze integrals which function that is been integrated acts only in a neighborhood of the boundary of the domain. Such terms are use to know the behaviour of the integrand in regions which Lebesgue measure tends to zero when a parameter goes to zero. We will illustrate these abstract results through two applications, both in Lipschitz domains of R2, where we add a concentration term in semi linear elliptic problems: oscillating boundary domain which tends to a fixed limit domain; and a thin domain with a oscillatory boundary. In both cases we prove the upper and lower semicontinuity of the family of solutions from these problems.
8

Um problema semilinear elíptico em domínio fino com termos de reações concentradas na fronteira / Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary

Manjate, Salvador Rafael 02 September 2015 (has links)
Analisamos o comportamento assintótico de uma família de equilíbrios de uma equação de reação-difusão com a condição de Neumann homegênea definido num domínio fino bidimensional com termos de reação concentradas em uma vizinhança oscilante da fronteira. Assumimos que o domínio e portanto a vizinhança oscilante se degeneram em um intervalo quando o parâmetro positivo tende a zero. O objetivo principal foi mostrar que essa família de soluções, converge para uma equação limite unidimensional, que captura a geometria e o comportamento assintótico dos conjuntos abertos onde o problema é estabelecido. De fato mostramos a continuidade da família de equilíbrios / In this work we analyze the behavior of a family of stead state solutions of a semilinear reaction-diffusion equation with homogeneous Neumann boundary condition, posed in a two-dimensional thin domain with reaction term concentrated in an narrow oscillating neighborhood. Indeed, we assume that the domain of definition of the solutions degenerates into an interval as a small parameter $\\epsilon$ goes to zero. Our main result is that this family of solutions converge to the solution of a one-dimensional limit equation capturing the geometry and oscillatory behaviour of the open sets where the problem is estabilished.
9

Integrais concentradas na fronteira e aplicações para problemas elípticos semilineares / Concentrating integrals and applications for semilinear elliptic problems

Ariadne Nogueira 09 August 2017 (has links)
Neste trabalho estudamos propriedades de integrais concentradas, ou seja, integrais cujo integrando atua apenas em uma vizinhança do domínio em questão. Tais termos são utilizados para conhecer o comportamento do integrando em regiões cuja medida de Lebesgue se aproxima de zero quando um parâmetro tende a zero. Ilustraremos estes resultados abstratos através de duas aplicações, ambas em domínios Lipschitz de R2, onde adicionamos um termo de concentração em problemas semilineares elípticos: domínio com fronteira oscilante que tende a um domínio limite fixo; e domínio do tipo fino com fronteira oscilante. Em ambos os casos, provamos a semicontinuidade superior e inferior da família de soluções dos problemas. / In this work we study concentrating integrals properties, in other words, we analyze integrals which function that is been integrated acts only in a neighborhood of the boundary of the domain. Such terms are use to know the behaviour of the integrand in regions which Lebesgue measure tends to zero when a parameter goes to zero. We will illustrate these abstract results through two applications, both in Lipschitz domains of R2, where we add a concentration term in semi linear elliptic problems: oscillating boundary domain which tends to a fixed limit domain; and a thin domain with a oscillatory boundary. In both cases we prove the upper and lower semicontinuity of the family of solutions from these problems.
10

Um problema semilinear elíptico em domínio fino com termos de reações concentradas na fronteira / Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary

Salvador Rafael Manjate 02 September 2015 (has links)
Analisamos o comportamento assintótico de uma família de equilíbrios de uma equação de reação-difusão com a condição de Neumann homegênea definido num domínio fino bidimensional com termos de reação concentradas em uma vizinhança oscilante da fronteira. Assumimos que o domínio e portanto a vizinhança oscilante se degeneram em um intervalo quando o parâmetro positivo tende a zero. O objetivo principal foi mostrar que essa família de soluções, converge para uma equação limite unidimensional, que captura a geometria e o comportamento assintótico dos conjuntos abertos onde o problema é estabelecido. De fato mostramos a continuidade da família de equilíbrios / In this work we analyze the behavior of a family of stead state solutions of a semilinear reaction-diffusion equation with homogeneous Neumann boundary condition, posed in a two-dimensional thin domain with reaction term concentrated in an narrow oscillating neighborhood. Indeed, we assume that the domain of definition of the solutions degenerates into an interval as a small parameter $\\epsilon$ goes to zero. Our main result is that this family of solutions converge to the solution of a one-dimensional limit equation capturing the geometry and oscillatory behaviour of the open sets where the problem is estabilished.

Page generated in 0.0629 seconds