• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Adaptive Responses by Transcriptional Regulators to small molecules in Prokaryotes : Structural studies of two bacterial one-component signal transduction systems DntR and HpNikR

Dian, Cyril January 2007 (has links)
<p>Prokaryotes are continually exposed to variations in their environment. Survival in unstable milieu requires a wide range of transcriptional regulators (TRs) that respond to specific environmental and cellular signals by modulating gene expression and provide an appropriate physiological response to external stimuli. These adaptive responses to environmental signals are mostly mediated by TRs from one of two families: the single or the two component signal transduction systems (1CSTS; 2CSTS). In this thesis the structural analysis of two 1CSTS – DntR and NikR − are presented. One study was carried out to try to develop a bacterial biosensor for synthetic dinitrotulenes compounds, the other to characterise the Ni-sensing mechanism that contributes to the acid adaptation of the human pathogen<i> Helicobacter pylori.</i> DntR belongs to the LysR family and the crystal structures obtained have allowed the proposal a model of the interaction of DntR with salicylate inducer as well as giving insights into the signal propagation mechanism in LysR-type transcription factors (<b>paper I</b>). DntR mutant crystal structures combined with the modelling of DntR-2,4-dnt interactions led to the design of a DntR mutant that has a limited response to 2,4-dnt in a whole cell biosensor system (<b>paper 2</b>). Crystal structures of apo-NikR from <i>H. pylori </i>(HpNikR) and of Ni-bound intermediary states of the protein were obtained. The latter have helped in unravelling the Ni incorporation and selectivity mechanisms of NikRs and have shown a strong cooperativity between conformational changes in the Ni binding domain with movements of the DNA binding domain (<b>paper 3</b>). Biochemical studies and comparisons of the HpNikR crystal structures with those of NikR homologues strongly suggest that HpNikR has evolved different surface properties (<b>paper 4</b>) and a new mode of DNA binding. </p>
2

Adaptive Responses by Transcriptional Regulators to small molecules in Prokaryotes : Structural studies of two bacterial one-component signal transduction systems DntR and HpNikR

Dian, Cyril January 2007 (has links)
Prokaryotes are continually exposed to variations in their environment. Survival in unstable milieu requires a wide range of transcriptional regulators (TRs) that respond to specific environmental and cellular signals by modulating gene expression and provide an appropriate physiological response to external stimuli. These adaptive responses to environmental signals are mostly mediated by TRs from one of two families: the single or the two component signal transduction systems (1CSTS; 2CSTS). In this thesis the structural analysis of two 1CSTS – DntR and NikR − are presented. One study was carried out to try to develop a bacterial biosensor for synthetic dinitrotulenes compounds, the other to characterise the Ni-sensing mechanism that contributes to the acid adaptation of the human pathogen Helicobacter pylori. DntR belongs to the LysR family and the crystal structures obtained have allowed the proposal a model of the interaction of DntR with salicylate inducer as well as giving insights into the signal propagation mechanism in LysR-type transcription factors (<b>paper I</b>). DntR mutant crystal structures combined with the modelling of DntR-2,4-dnt interactions led to the design of a DntR mutant that has a limited response to 2,4-dnt in a whole cell biosensor system (<b>paper 2</b>). Crystal structures of apo-NikR from H. pylori (HpNikR) and of Ni-bound intermediary states of the protein were obtained. The latter have helped in unravelling the Ni incorporation and selectivity mechanisms of NikRs and have shown a strong cooperativity between conformational changes in the Ni binding domain with movements of the DNA binding domain (<b>paper 3</b>). Biochemical studies and comparisons of the HpNikR crystal structures with those of NikR homologues strongly suggest that HpNikR has evolved different surface properties (<b>paper 4</b>) and a new mode of DNA binding.
3

In search of a biosensor for DNT detection : Studies of inducer response and specificity of DntR

Lönneborg, Rosa January 2011 (has links)
The primary aim of the work presented in this thesis was to change the inducer specificity of the DntR protein in order to improve the response to DNT. The long-term goal is to use this protein in a biosensor for DNT, a signature compound for detection of the explosive TNT. Another aspect of this work was to understand the mechanisms of inducer binding and how the binding of an inducer molecule changes the DntR structure into a state that triggers transcriptional activation. In the papers included in this thesis the inducer specificity of wt DntR has been investigated under different conditions. The functional effects of specific mutations have also been investigated, in some cases in combination with structure determination using X-ray crystallography. In addition, structural data offering insights into the details of inducer binding and conformational changes upon inducer binding are presented and discussed in terms of mechanisms for transcriptional activation by DntR. Furthermore, a directed evolution strategy was employed in order to find variants of DntR with improved response to DNT. A variant with a large improvement in the DNT response was isolated and characterized. In optimized growth conditions, this DntR variant had a nearly 10-fold increase in fluorescence in response to DNT compared to wt DntR. Specific substitutions found in this DntR variant are suggested to be important for changing the inducer response. / Syftet med denna avhandling har varit att förbättra förmågan hos proteinet DntR att upptäcka DNT. Det långsiktiga målet har varit att använda DntR i en biosensor för att upptäcka sprängämnet TNT, som avger DNT som en ”signaturmolekyl”. En annan aspekt har varit att bättre förstå den detaljerade mekanismen för hur DntR fungerar. DntR är ett protein som binder till en viss DNA sekvens (promotor) och reglerar hur gener intill denna promotorsekvens läses av. När en inducerande molekyl som t.ex. DNT binder till DntR förändras proteinets struktur på ett sådant sätt att DntR kan aktivera transkription av de gener som finns intill promotor-sekvensen. För att mäta hur DntR reagerar på olika inducerande molekyler har DntR uttryckts i bakterien Escherichia coli, som också innehållit promotorn som DntR binder till. Intill promotorn sitter en gen som kodar för proteinet GFP. När en inducerande molekyl binder till DntR, slås avläses gfp-genen, och det fluorescerande proteinet GFP produceras. Ju mer GFP som produceras i cellerna, desto högre fluorescens kan uppmätas när cellerna analyseras.   I de artiklar som presenteras i avhandlingen har vi undersökt hur olika substitutioner i DntR proteinet påverkar specificiten och sensitiviteten och hur dessa egenskaper kan påverkas av olika experimentella faktorer. Effekten av substitutioner har relaterats till strukturdata, där bilder av hur proteinet ser ut på molekylär nivå har tagits fram. Dessutom presenteras även en bild av hur DntR förändras beroende på om inducerande molekyler är bundna eller inte. En sådan strukturbild ökar förståelsen för de mekanismer som gör att bindning av en inducerande molekyl orsakar en förändring av formen hos DntR på så sätt att avläsning av gener kan aktiveras. Vi har också använt en metod där evolutionära processer härmats för att få fram varianter av DntR med förbättrad respons till DNT. En variant med en drastisk ökning av DNT-responsen har isolerats, och dess egenskaper har karaktäriserats. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript

Page generated in 0.0538 seconds