• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation and characterization of an attenuated mutant in a response-regulator gene of Francisella tularensis live vaccine strain (LVS)

Sammons, Wendy L 01 June 2007 (has links)
Francisella tularensis is a zoonotic bacterium that must exist in diverse environments ranging from arthropod vectors to mammalian hosts. To better understand how genes are regulated in these different environments, a transcriptional response- regulator gene (genome locus FTL0552) was deleted in F. tularensis live vaccine strain (LVS). The FTL0552 deletion mutant exhibited slightly reduced rates of extracellular growth but was unable to replicate or survive in mouse macrophages and was avirulent in the mouse model using either BALB/c or C57BL/6 mice. Mice infected with the FTL0552 mutant produced reduced levels of inflammatory cytokines, exhibited reduced histopathology and cleared the bacteria quicker than mice infected with LVS. Mice that survived infection with the FTL0552 mutant were afforded partial protection when challenged with a lethal dose of the virulent Schu S4 strain (4 of 10 survivors, day 21 post infection) when compared to naïve mice (0 of 10 survivors by day 7 post infection). Microarray experiments indicate that 148 genes are regulated in the FTL0552 mutant. Most of the genes are down regulated, indicating that FTL0552 controls transcription of genes in a positive manner. The list of down regulated genes includes genes located within the Francisella Pathogenicity Island (FPI) that are essential for intracellular survival and virulence of Francisella tularensis. Furthermore, a mutant in FTL0552 or the comparable locus in Schu S4 (FTT1557c) may be an alternative candidate vaccine for tularemia.
2

Adaptive Responses by Transcriptional Regulators to small molecules in Prokaryotes : Structural studies of two bacterial one-component signal transduction systems DntR and HpNikR

Dian, Cyril January 2007 (has links)
<p>Prokaryotes are continually exposed to variations in their environment. Survival in unstable milieu requires a wide range of transcriptional regulators (TRs) that respond to specific environmental and cellular signals by modulating gene expression and provide an appropriate physiological response to external stimuli. These adaptive responses to environmental signals are mostly mediated by TRs from one of two families: the single or the two component signal transduction systems (1CSTS; 2CSTS). In this thesis the structural analysis of two 1CSTS – DntR and NikR − are presented. One study was carried out to try to develop a bacterial biosensor for synthetic dinitrotulenes compounds, the other to characterise the Ni-sensing mechanism that contributes to the acid adaptation of the human pathogen<i> Helicobacter pylori.</i> DntR belongs to the LysR family and the crystal structures obtained have allowed the proposal a model of the interaction of DntR with salicylate inducer as well as giving insights into the signal propagation mechanism in LysR-type transcription factors (<b>paper I</b>). DntR mutant crystal structures combined with the modelling of DntR-2,4-dnt interactions led to the design of a DntR mutant that has a limited response to 2,4-dnt in a whole cell biosensor system (<b>paper 2</b>). Crystal structures of apo-NikR from <i>H. pylori </i>(HpNikR) and of Ni-bound intermediary states of the protein were obtained. The latter have helped in unravelling the Ni incorporation and selectivity mechanisms of NikRs and have shown a strong cooperativity between conformational changes in the Ni binding domain with movements of the DNA binding domain (<b>paper 3</b>). Biochemical studies and comparisons of the HpNikR crystal structures with those of NikR homologues strongly suggest that HpNikR has evolved different surface properties (<b>paper 4</b>) and a new mode of DNA binding. </p>
3

Adaptive Responses by Transcriptional Regulators to small molecules in Prokaryotes : Structural studies of two bacterial one-component signal transduction systems DntR and HpNikR

Dian, Cyril January 2007 (has links)
Prokaryotes are continually exposed to variations in their environment. Survival in unstable milieu requires a wide range of transcriptional regulators (TRs) that respond to specific environmental and cellular signals by modulating gene expression and provide an appropriate physiological response to external stimuli. These adaptive responses to environmental signals are mostly mediated by TRs from one of two families: the single or the two component signal transduction systems (1CSTS; 2CSTS). In this thesis the structural analysis of two 1CSTS – DntR and NikR − are presented. One study was carried out to try to develop a bacterial biosensor for synthetic dinitrotulenes compounds, the other to characterise the Ni-sensing mechanism that contributes to the acid adaptation of the human pathogen Helicobacter pylori. DntR belongs to the LysR family and the crystal structures obtained have allowed the proposal a model of the interaction of DntR with salicylate inducer as well as giving insights into the signal propagation mechanism in LysR-type transcription factors (<b>paper I</b>). DntR mutant crystal structures combined with the modelling of DntR-2,4-dnt interactions led to the design of a DntR mutant that has a limited response to 2,4-dnt in a whole cell biosensor system (<b>paper 2</b>). Crystal structures of apo-NikR from H. pylori (HpNikR) and of Ni-bound intermediary states of the protein were obtained. The latter have helped in unravelling the Ni incorporation and selectivity mechanisms of NikRs and have shown a strong cooperativity between conformational changes in the Ni binding domain with movements of the DNA binding domain (<b>paper 3</b>). Biochemical studies and comparisons of the HpNikR crystal structures with those of NikR homologues strongly suggest that HpNikR has evolved different surface properties (<b>paper 4</b>) and a new mode of DNA binding.

Page generated in 0.1114 seconds