• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconhecimento de veículos em imagens coloridas utilizando máquinas de Boltzmann profundas e projeção bilinear / Vehicle recognition in color images using deep Boltzmann machines and bilienar projection

Santos, Daniel Felipe Silva [UNESP] 14 August 2017 (has links)
Submitted by Daniel Felipe Silva Santos null (danielfssantos@yahoo.com.br) on 2017-08-29T19:56:20Z No. of bitstreams: 1 ReconhecedorDeVeiculos2D-DBM.pdf: 3800862 bytes, checksum: 46f12ff55f4e0680833b9b1b184ad505 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-08-29T20:19:13Z (GMT) No. of bitstreams: 1 santos_dfs_me_sjrp.pdf: 3800862 bytes, checksum: 46f12ff55f4e0680833b9b1b184ad505 (MD5) / Made available in DSpace on 2017-08-29T20:19:13Z (GMT). No. of bitstreams: 1 santos_dfs_me_sjrp.pdf: 3800862 bytes, checksum: 46f12ff55f4e0680833b9b1b184ad505 (MD5) Previous issue date: 2017-08-14 / Neste trabalho é proposto um método para reconhecer veículos em imagens coloridas baseado em uma rede neural Perceptron Multicamadas pré-treinada por meio de técnicas de aprendizado em profundidade, sendo uma das técnicas composta por Máquinas de Boltzmann Profundas e projeção bilinear e a outra composta por Máquinas de Boltzmann Profundas Multinomiais e projeção bilinear. A proposição deste método justifica-se pela demanda cada vez maior da área de Sistemas de Transporte Inteligentes. Para se obter um reconhecedor de veículos robusto, a proposta é utilizar o método de treinamento inferencial não-supervisionado Divergência por Contraste em conjunto com o método inferencial Campos Intermediários, para treinar múltiplas instâncias das redes profundas. Na fase de pré-treinamento local do método proposto são utilizadas projeções bilineares para reduzir o número de nós nas camadas da rede. A junção das estruturas em redes profundas treinadas separadamente forma a arquitetura final da rede neural, que passa por uma etapa de pré- treinamento global por Campos Intermediários. Na última etapa de treinamentos a rede neural Perceptron Multicamadas (MLP) é inicializada com os parâmetros pré-treinados globalmente e a partir deste ponto, inicia-se um processo de treinamento supervisionado utilizando gradiente conjugado de segunda ordem. O método proposto foi avaliado sobre a base BIT-Vehicle de imagens frontais de veículos coletadas de um ambiente de tráfego real. Os melhores resultados obtidos pelo método proposto utilizando rede profunda multinomial foram de 81, 83% de acurácia média na versão aumentada da base original e 91, 10% na versão aumentada da base combinada (Carros, Caminhões e Ônibus). Para a abordagem de redes profundas não multinomiais os melhores resultados foram de 81, 42% na versão aumentada da base original e 91, 13% na versão aumentada da base combinada. Com a aplicação da projeção bilinear, houve um decréscimo considerável nos tempos de treinamento das redes profundas multinomial e não multinomial, sendo que no melhor caso o tempo de execução do método proposto foi 5, 5 vezes menor em comparação com os tempos das redes profundas sem aplicação de projeção bilinear. / In this work it is proposed a vehicle recognition method for color images based on a Multilayer Perceptron neural network pre-trained through deep learning techniques (one technique composed by Deep Boltzmann Machines and bilinear projections and the other composed by Multinomial Deep Boltzmann Machines and bilinear projections). This proposition is justified by the increasing demand in Traffic Engineering area for the class of Intelligent Transportation Systems. In order to create a robust vehicle recognizer, the proposal is to use the inferential unsupervised training method of Contrastive Divergence together with the Mean Field inferential method, for training multiple instances of deep models. In the local pre-training phase of the proposed method, bilinear projections are used to reduce the number of nodes of the neural network. The combination of the separated trained deep models constitutes the final recognizer’s architecture, that yet will be global pre-trained through Mean Field. In the last phase of training the Multilayer Perceptron neural network is initialized with globally pre-trained parameters and from this point, a process of supervised training starts using second order conjugate gradient. The proposed method was evaluated over the BIT-Vehicle database of frontal images of vehicles collected from a real road traffic environment. The best results obtained by the proposed method that used multinomial deep models were 81.83% of mean accuracy in the augmented original database version and 91.10% in the augmented combined database version (Cars, Trucks and Buses). For the non-multinomial deep models approach, the best results were 81.42% in the augmented version of the original database and 91.13% in the augmented version of the combined database. It was also observed a significant decreasing in the training times of the multinomial deep models and non-multinomial deep models with bilinear projection application, where in the best case scenario the execution time of the proposed method was 5.5 times lower than the deep models that did not use bilinear projection.
2

Aprendizado não-supervisionado de características para detecção de conteúdo malicioso / Unsupervised learning features for malicious content detection

Silva, Luis Alexandre da [UNESP] 25 August 2016 (has links)
Submitted by LUIS ALEXANDRE DA SILVA null (luis@iontec.com.br) on 2016-11-10T17:42:59Z No. of bitstreams: 1 final_mestrado_LUIS_ALEXANDRE_DA_SILVA_2016.pdf: 1076876 bytes, checksum: 2ecd24d0aa99d8fac09eb7b56fc48eb7 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO null (luizaromanetto@hotmail.com) on 2016-11-16T16:33:02Z (GMT) No. of bitstreams: 1 silva_la_me_sjrp.pdf: 1076876 bytes, checksum: 2ecd24d0aa99d8fac09eb7b56fc48eb7 (MD5) / Made available in DSpace on 2016-11-16T16:33:02Z (GMT). No. of bitstreams: 1 silva_la_me_sjrp.pdf: 1076876 bytes, checksum: 2ecd24d0aa99d8fac09eb7b56fc48eb7 (MD5) Previous issue date: 2016-08-25 / O aprendizado de características tem sido um dos grandes desafios das técnicas baseadas em Redes Neurais Artificiais (RNAs), principalmente quando se trata de um grande número de amostras e características que as definem. Uma técnica ainda pouco explorada nesse campo diz respeito as baseadas em RNAs derivada das Máquinas de Boltzmann Restritas, do inglês Restricted Boltzmann Machines (RBM), principalmente na área de segurança de redes de computadores. A proposta deste trabalho visa explorar essas técnicas no campo de aprendizado não-supervisionado de características para detecção de conteúdo malicioso, especificamente na área de segurança de redes de computadores. Experimentos foram conduzidos usando técnicas baseadas em RBMs para o aprendizado não-supervisionado de características visando a detecção de conteúdo malicioso utilizando meta-heurísticas baseadas em algoritmos de otimização, voltado à detecção de spam em mensagens eletrônicas. Nos resultados alcançados por meio dos experimentos, observou-se, que com uma quantidade menor de características, podem ser obtidos resultados similares de acurácia quando comparados com as bases originais, com um menor tempo relacionado ao processo de treinamento, evidenciando que técnicas de aprendizado baseadas em RBMs são adequadas para o aprendizado de características no contexto deste trabalho. / The features learning has been one of the main challenges of techniques based on Artificial Neural Networks (ANN), especially when it comes to a large number of samples and features that define them. Restricted Boltzmann Machines (RBM) is a technique based on ANN, even little explored especially in security in computer networks. This study aims to explore these techniques in unsupervised features learning in order to detect malicious content, specifically in the security area in computer networks. Experiments were conducted using techniques based on RBMs for unsupervised features learning, which was aimed to identify malicious content, using meta-heuristics based on optimization algorithms, which was designed to detect spam in email messages. The experiment results demonstrated that fewer features can get similar results as the accuracy of the original bases with a lower training time, it was concluded that learning techniques based on RBMs are suitable for features learning in the context of this work.
3

A new approach to Decimation in High Order Boltzmann Machines

Farguell Matesanz, Enric 20 January 2011 (has links)
La Màquina de Boltzmann (MB) és una xarxa neuronal estocàstica amb l'habilitat tant d'aprendre com d'extrapolar distribucions de probabilitat. Malgrat això, mai ha arribat a ser tant emprada com d'altres models de xarxa neuronal, com ara el perceptró, degut a la complexitat tan del procés de simulació com d'aprenentatge: les quantitats que es necessiten al llarg del procés d'aprenentatge són normalment estimades mitjançant tècniques Monte Carlo (MC), a través de l'algorisme del Temprat Simulat (SA). Això ha portat a una situació on la MB és més ben aviat considerada o bé com una extensió de la xarxa de Hopfield o bé com una implementació paral·lela del SA. Malgrat aquesta relativa manca d'èxit, la comunitat científica de l'àmbit de les xarxes neuronals ha mantingut un cert interès amb el model. Una de les extensions més rellevants a la MB és la Màquina de Boltzmann d'Alt Ordre (HOBM), on els pesos poden connectar més de dues neurones simultàniament. Encara que les capacitats d'aprenentatge d'aquest model han estat analitzades per d'altres autors, no s'ha pogut establir una equivalència formal entre els pesos d'una MB i els pesos d'alt ordre de la HOBM. En aquest treball s'analitza l'equivalència entre una MB i una HOBM a través de l'extensió del mètode conegut com a decimació. Decimació és una eina emprada a física estadística que es pot també aplicar a cert tipus de MB, obtenint expressions analítiques per a calcular les correlacions necessàries per a dur a terme el procés d'aprenentatge. Per tant, la decimació evita l'ús del costós algorisme del SA. Malgrat això, en la seva forma original, la decimació podia tan sols ser aplicada a cert tipus de topologies molt poc densament connectades. La extensió que es defineix en aquest treball permet calcular aquests valors independentment de la topologia de la xarxa neuronal; aquest model es basa en afegir prou pesos d'alt ordre a una MB estàndard com per a assegurar que les equacions de la decimació es poden solucionar. Després, s'estableix una equivalència directa entre els pesos d'un model d'alt ordre, la distribució de probabilitat que pot aprendre i les matrius de Hadamard: les propietats d'aquestes matrius es poden emprar per a calcular fàcilment els pesos del sistema. Finalment, es defineix una MB estàndard amb una topologia específica que permet entendre millor la equivalència exacta entre unitats ocultes de la MB i els pesos d'alt ordre de la HOBM. / La Máquina de Boltzmann (MB) es una red neuronal estocástica con la habilidad de aprender y extrapolar distribuciones de probabilidad. Sin embargo, nunca ha llegado a ser tan popular como otros modelos de redes neuronals como, por ejemplo, el perceptrón. Esto es debido a la complejidad tanto del proceso de simulación como de aprendizaje: las cantidades que se necesitan a lo largo del proceso de aprendizaje se estiman mediante el uso de técnicas Monte Carlo (MC), a través del algoritmo del Temple Simulado (SA). En definitiva, la MB es generalmente considerada o bien una extensión de la red de Hopfield o bien como una implementación paralela del algoritmo del SA. Pese a esta relativa falta de éxito, la comunidad científica del ámbito de las redes neuronales ha mantenido un cierto interés en el modelo. Una importante extensión es la Màquina de Boltzmann de Alto Orden (HOBM), en la que los pesos pueden conectar más de dos neuronas a la vez. Pese a que este modelo ha sido analizado en profundidad por otros autores, todavía no se ha descrito una equivalencia formal entre los pesos de una MB i las conexiones de alto orden de una HOBM. En este trabajo se ha analizado la equivalencia entre una MB i una HOBM, a través de la extensión del método conocido como decimación. La decimación es una herramienta propia de la física estadística que también puede ser aplicada a ciertos modelos de MB, obteniendo expresiones analíticas para el cálculo de las cantidades necesarias en el algoritmo de aprendizaje. Por lo tanto, la decimación evita el alto coste computacional asociado al al uso del costoso algoritmo del SA. Pese a esto, en su forma original la decimación tan solo podía ser aplicada a ciertas topologías de MB, distinguidas por ser poco densamente conectadas. La extensión definida en este trabajo permite calcular estos valores independientemente de la topología de la red neuronal: este modelo se basa en añadir suficientes pesos de alto orden a una MB estándar como para asegurar que las ecuaciones de decimación pueden solucionarse. Más adelante, se establece una equivalencia directa entre los pesos de un modelo de alto orden, la distribución de probabilidad que puede aprender y las matrices tipo Hadamard. Las propiedades de este tipo de matrices se pueden usar para calcular fácilmente los pesos del sistema. Finalmente, se define una BM estándar con una topología específica que permite entender mejor la equivalencia exacta entre neuronas ocultas en la MB y los pesos de alto orden de la HOBM. / The Boltzmann Machine (BM) is a stochastic neural network with the ability of both learning and extrapolating probability distributions. However, it has never been as widely used as other neural networks such as the perceptron, due to the complexity of both the learning and recalling algorithms, and to the high computational cost required in the learning process: the quantities that are needed at the learning stage are usually estimated by Monte Carlo (MC) through the Simulated Annealing (SA) algorithm. This has led to a situation where the BM is rather considered as an evolution of the Hopfield Neural Network or as a parallel implementation of the Simulated Annealing algorithm. Despite this relative lack of success, the neural network community has continued to progress in the analysis of the dynamics of the model. One remarkable extension is the High Order Boltzmann Machine (HOBM), where weights can connect more than two neurons at a time. Although the learning capabilities of this model have already been discussed by other authors, a formal equivalence between the weights in a standard BM and the high order weights in a HOBM has not yet been established. We analyze this latter equivalence between a second order BM and a HOBM by proposing an extension of the method known as decimation. Decimation is a common tool in statistical physics that may be applied to some kind of BMs, that can be used to obtain analytical expressions for the n-unit correlation elements required in the learning process. In this way, decimation avoids using the time consuming Simulated Annealing algorithm. However, as it was first conceived, it could only deal with sparsely connected neural networks. The extension that we define in this thesis allows computing the same quantities irrespective of the topology of the network. This method is based on adding enough high order weights to a standard BM to guarantee that the system can be solved. Next, we establish a direct equivalence between the weights of a HOBM model, the probability distribution to be learnt and Hadamard matrices. The properties of these matrices can be used to easily calculate the value of the weights of the system. Finally, we define a standard BM with a very specific topology that helps us better understand the exact equivalence between hidden units in a BM and high order weights in a HOBM.

Page generated in 0.0655 seconds