• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • Tagged with
  • 11
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implication des récepteurs FcyRIIA et TLR4 dans la production de cytokines des mégacaryocytes / Implication des récepteurs Fc[gamma]RIIA et TLR4 dans la production de cytokines des mégacaryocytes

Portal, Julie 29 January 2024 (has links)
Titre de l'écran-titre (visionné le 16 janvier 2024) / Les mégacaryocytes (MK), outre leur rôle de producteurs des plaquettes, sont des cellules de plus en plus étudiées pour leur contribution dans la réponse immunitaire. Les MK humains expriment plusieurs récepteurs immunitaires, dont celui de la région constante des immunoglobulines G (IgG), le FcγRIIA, et divers toll-like receptors (TLR) incluant TLR4, tous impliqués dans la réponse innée. Il est possible que les MK humains participent à l'inflammation via des interactions directes avec les récepteurs FcγRIIA et TLR, dont TLR4. Pour étudier l'implication des MK dans la réponse inflammatoire, des souris humanisées exprimant le récepteur FcγRIIA (FcγRIIA$^\textup{TGN}$) et des souris sauvages ont été utilisées. Une technique de culture et d'isolation des MK murins a été développée, permettant d'obtenir à partir de la moelle osseuse des MK matures et viables. Ces MK ont été soumis à des challenges immunitaires in vitro à l'aide de complexes immuns IgG, ou du ligand de TLR4, le lipopolysaccharide (LPS). La libération de cytokines inflammatoires a été mesurée par analyse ELISA et essai multiplex afin de dresser un profil cytokinique. Ces analyses ont révélé chez les MK FcγRIIA$^\textup{TGN}$ et sauvage en contact avec le LPS une augmentation de libération de plusieurs chimiokines inflammatoires impliquées dans le recrutement des neutrophiles. La mise en présence des MK de souris FcγRIIA$^\textup{TGN}$ avec les complexes immuns a conduit à une augmentation importante de libération de MIP (protéine inflammatoire macrophagique)-2, une chimiokine inflammatoire aussi impliquée dans l'activation des neutrophiles. De plus, dans ces mêmes conditions, une tendance à plus de libération de PF4 (cytokine platelet factor 4) a aussi été observée. En plus d'établir des conditions de culture et d'isolation des MK, les travaux ont permis d'étudier l'implication des récepteurs FcγRIIA et TLR4 dans la réponse inflammatoire médiée par les MK et leur libération de chimiokines qui sont également liées à l'activité des neutrophiles.
2

Les effets du peptide MTPG-43 sur les cellules mégacaryocytaires humaines

Ste-Marie, Alexandre 17 April 2018 (has links)
La mégacaryopoïèse est le nom donné à la différenciation des cellules souches hématopoïétiques (CSHs) en mégacaryocytes (MCs). Elles sont les cellules spécialisées précurseures des plaquettes sanguines. Au cours de leur maturation, les MCs entreprennent plusieurs rondes successives de réplication d'ADN. Ce phénomène est appelé endomitose. De récentes évidences suggèrent que les MCs endomitotiques seraient incapables de compléter leur division cellulaire. Dans le cadre de ce projet de recherche, il a été démontré que la surproduction du peptide MTPG-43 dans des lignées leucémiques humaines entraîne une augmentation du volume cytoplasmique et un changement de morphologie cellulaire, rappelant ainsi certaines acquisitions du MC différencié. Fusionné ou non à des marqueurs fluorescents, la surexpression transgénique du peptide dans les lignées exprimant un phénotype mégacaryocytaire entraîne un accroissement de la taille des cellules sans pour autant faire intervenir une augmentation du degré de ploïdie nucléaire. N'affectant pas la viabilité, l'accumulation du peptide à la membrane cytoplasmique semble rendre les cellules plus labiles. L'expression du peptide dans des MCs dérivés de cultures de CSHs de sang de cordon à l'aide d'un vecteur d'expression adénoviral n'a cependant pas permis d'accroître la production de plaquettes in vitro. Ce peptide demeure toutefois un outil moléculaire intéressant pour approfondir et élucider les mécanismes biologiques qui provoquent le gigantisme cellulaire.
3

Rôle du Ptdlns5P et de PIKfyve dans le contrôle de l'intégrité des granules plaquettaires / Role of PtdIns5P and PIKfyve in the control of platelet granules integrity

Mansour, Rana 24 June 2016 (has links)
Les plaquettes jouent un rôle primordial dans le processus d'hémostase. Elles sont générées à partir des mégacaryocytes (MK) présents dans la moelle osseuse. En plus des compartiments vésiculaires classiques de la voie d'endocytose et de dégradation vers les lysosomes, les plaquettes possèdent deux compartiments sécrétoires additionnels, les granules alpha et denses. Ces granules sont générés au cours de la maturation des MK à partir des corps multivésiculaires (MVB) et contiennent des molécules essentielles aux fonctions plaquettaires. Un défaut dans la production ou le remplissage de ces granules est à l'origine de symdromes hémorragiques. Malgré des études montrant l'implication de certaines protéines du trafic vésiculaire, les mécanismes moléculaires qui contrôlent la biogenèse et la maintenance des granules plaquettaires dans les MK ainsi que les mécanismes de tri des cargos qu'ils contiennent, ne sont pas complètement élucidés. Au cours de ces dernières années les phosphoinositides (PI) sont apparus comme des acteurs majeurs du trafic vésiculaire en régulant de la localisation de certaines protéines. Cependant, peu de choses sont connues à ce jour quant au rôle de ces lipides dans la biogenèse et le trafic des granules plaquettaires dans les MK. Au cours de ma thèse, j'ai étudié le rôle d'un des membres de la famille des PI, le phosphatidylinositol 5-phosphate (PtdIns5P), ainsi que deux enzymes responsables de sa synthèse : la 3-phosphatase MTM1 (mutée dans la myopathie centronucléaire, CNM) et la lipide kinase PIKfyve, dans le contrôle de la dynamique des granules. Mes résultats montrent que MTM1 est présente dans les MK et les plaquettes et est localisée en partie sur les granules denses. Cependant, cette phosphatase n'est pas essentielle pour la production et l'activation plaquettaire. En effet, les souris MTM1 KO ne présentent pas de défaut du nombre plaquettaire, ni d'agrégation et de sécrétion suite à une stimulation par la thrombine ou le collagène. Nous montrons la présence d'autres membres de la famille des myotubularines dans les plaquettes et les MK différenciés, ce qui pourrait expliquer une redondance de fonction. De façon intéressante, nous montrons que la détection de MTM1 à partir de faible quantité de sang (<100 ?l) pourrait déboucher sur la mise au point d'un test diagnostic rapide pour la détection de la CNM. Mes travaux ont été focalisés par la suite sur PIKfyve. En utilisant la lignée leucémique mégacaryoblastique MEG-01 différenciée, je montre pour la première fois que le PtdIns5P est localisé dans les compartiments endosomes tardifs ainsi que dans les granules alpha et denses. Dans ces cellules, PIKfyve contrôle plus de 50% du PtdIns5P. De façon remarquable, l'inhibition pharmacologique de PIKfyve ou son invalidation par siRNA entraine une perte d'identité des granules avec la formation de granules élargis qui présentent à la fois des marqueurs de granules denses et alpha et bloque totalement leur mobilité. Ces données ont été confirmées dans des MK primaires de souris. L'addition de PtdIns5P exogène sur les MEG-01 restaure le phénotype normal des granules démontrant que PIKfyve, par l'intermédiaire du PtdIns5P, contrôle l'intégrité des granules qui est donc un phénomène actif et les mécanismes de fusion/fission des vésicules affectant le tri des cargos. De plus, l'inhibition de PIKfyve dans les plaquettes isolées affecte leur agrégation et leur sécrétion, montrant que PIKfyve et le PtdIns5P peuvent agir d'une part lors de la biogénèse des plaquettes dans les MK et d'autre part sur le fonctionnement des plaquettes. Dans leur ensemble, mes travaux placent PIKfyve et son produit lipidique, le PtdIns5P, comme des acteurs majeurs de la maintenance et l'identité des granules plaquettaires. / Platelets play a major role in homeostasis processes. They are generated from megakaryocytes (MKs) in the bone marrow. In addition to the classic vesicular compartments of the endocytic and degradation pathway toward lysosomes, platelets have two additional specialized secretory compartments, the dense and alpha granules. These granules are made during MK maturation from multivesicular bodies (MVB) and contain molecules that are essential to platelet functions. Defect in the production of these granules or absence of their cargos is the cause of hemorrhagic syndromes. Despite many studies showing the implication of vesicle trafficking proteins, the molecular mechanisms controlling the biogenesis and maintenance of the granules and cargo sorting are not completely understood. In recent years, phosphoinositides (PIs) have emerged as key actors in vesicular trafficking playing a role of important spatial regulators of many proteins. However, little is known about the role of these lipids in the biogenesis and the trafficking of platelet granules in the MK.During my thesis, I have studied the role of one the member of the PI family, the phosphatidylinositol 5-phosphate (PtdIns5P), and of two enzymes responsible of its synthesis : the 3-phosphatase MTM1(mutated in the Centronuclear myopathy, CNM) and the lipid kinase PIKfyve, in the control of granules dynamic. My results show that MTM1 is present in MK and platelet and that platelet MTM1 localizes in part on dense granules. However, the phosphatase is not mandatory for platelet production and activation. Indeed, the knock-out of MTM1 in mice has no effect on platelet count, aggregation and secretion following thrombin or collagen stimulation. We show the presence of other members of the myotubularins family in platelet and differentiated MK, which can explain a redundancy in functions. Interestingly, we show that MTM1 detection from small amount of blood (<100 ?l) could lead to the development of a rapid diagnostic test for the detection of the CNM. My work was next focalized on PIKfyve. Using the differentiated leukemic megakaryoblastic cell line MEG-01 as a cell model, I showed for the first time that PtdIns5P is localized on late endosome and on alpha and dense granules. In these cells, PIKfyve controls more than 50% of cellular PtdIns5P. Remarkably, pharmacological inhibition of PIKfyve or its invalidation by siRNA leads to a loss of granules identity with the formation of enlarged granules containing both alpha and dense granules markers, and totally blocks their mobility. These data were also confirmed on primary mice MK. Addition of exogenous PtdIns5P on MEG-01 cells restores the normal phenotype of granules showing that PIKfyve, via PtdIns5P, controls granules integrity, an active phenomenon, and the fusion/fission mechanisms that affect cargos sorting. Furthermore, PIKfyve inhibition in isolated platelet affects their aggregation and secretion, showing that PIKfyve and the PtdIns5P may act on the biogenesis of platelets in MK and also on the function of mature platelets. In conclusion, my Ph.D. work shows that PIKfyve and its product PtdIns5P are major actors in platelet granules maintenance and integrity.
4

Étude statistique de l'effet in vitro des cytokines sur la maturation des mégakaryocytes pour optimiser la production de plaquettes

Cortin, Valérie 11 April 2018 (has links)
Étudier la mégakaryopoïèse sans utiliser de méthode systématique d'optimisation freine le développement de systèmes efficaces de culture ex vivo des mégakaryocytes (MK) qui produisent les plaquettes sanguines. Grâce à l'utilisation d'une stratégie statistique de planification d'expériences, cette étude de doctorat a permis de quantifier les effets individuels et interactifs de cytokines sur la mégakaryopoïèse in vitro et d'optimiser les rendements en MK matures et en plaquettes. Les cellules de sang de cordon enrichies en CD34+ ont été cultivées pendant 7 jours dans des conditions favorisant la différenciation mégakaryocytaire. Les cellules ainsi obtenues ont ensuite été placées dans différentes combinaisons de cytokines définies par les plans d'expériences. Les plans Plackett Burman utilisés pour analyser 13 cytokines au total, ont été peu efficaces pour identifier les facteurs importants dû à leur faible niveau de résolution. Par contre, l'analyse statistique des plans factoriels à deux niveaux a démontré qu'en présence de la thrombopoïétine (TPO), la cytokine clé de la mégakaryopoïèse, la différenciation et la maturation des MK étaient significativement stimulées par le « stem cell factor » (SCF), l'interleukine (IL)-6 et l'IL-9, alors que le « Flt-3 ligand » (FL) favorisait uniquement les MK immatures. De plus, l'érythropoïétine (EPO), souvent utilisée pour la culture des MK, était un inhibiteur de la maturation des MK. Au niveau de la polyploïdisation, une réduction de la concentration en IL-6, IL-9 et surtout TPO semble favorable. La méthode de surface dose-réponse a permis de déterminer la concentration optimale en cytokines sélectionnées (TPO, SCF, IL-6 et IL-9). Le nouveau mélange de cytokines mis au point (BS1) maximise l'expansion et la maturation des MK, tout en donnant une proportion de MK très élevée (-90%). Un autre optimum, identifié à une concentration plus élevée en SCF, permet d'augmenter davantage la production de MK matures et plaquettes mais réduit la pureté en MK. Ces méthodes statistiques constituent des outils efficaces pour analyser un système complexe de cytokines et pour développer des systèmes prometteurs de production ex vivo des MK et plaquettes à des fins cliniques. / Studying megakaryopoiesis without using a rationale optimization method limits the development of efficient ex vivo culture Systems for megakaryocytes (MK) which produce blood platelets. In this thesis, individual and interactive cytokine effects on in vitro megakaryopoiesis were quantified and yields of mature MK and platelets were optimized by applying a statistical design of experiment strategy. CD34+ -enriched cord blood cells were first cultured for 7 days in conditions favoring commitment into the MK lineage. The obtained cells were then placed in different cytokine combinations defined by experimental designs. Because of their low resolution, the Plackett and Burman designs first used to screen 13 cytokines, were not efficient to identify the important factors. In contrast, the statistical analysis of the two-level factorial designs revealed that in the presence of thrombopoietin (TPO), the key cytokine for megakaryopoiesis, MK maturation was significantly stimulated by stem cell factor (SCF), interleukin (IL)-6 and IL-9, whereas Flt-3 ligand (FL) had a positive effect only on the expansion of immature MK. Moreover, erythropoietin (EPO) was an inhibitor of MK maturation. Importantly, a reduction of the concentration of IL-6, IL-9 and especially TPO seems favorable for polyploidy. A dose-response surface methodology was then used to find the optimal concentrations of the selected cytokines (TPO, SCF, IL-6 and IL-9). The new cytokine cocktail developed (BS1) maximizes MK expansion and maturation, and gives a very high MK purity (-90%). Another optimum was also found at a higher SCF concentration, which further improves mature MK and platelet production, but reduces MK purity. These statistical methods provide an efficient tool to analyze complex Systems of cytokines and to develop promising ex-vivo MK culture Systems for clinical applications.
5

Rôle d’OTT1 et de la voie NOTCH dans la mégacaryopoïèse / Role of OTT1 and NOTCH signaling in megakaryopoiesis

Mabialah, Vinciane 26 June 2013 (has links)
L’hématopoïèse est le processus physiologique qui permet le développement de l’ensemble des cellules sanguines matures, leur renouvellement et leur homéostasie tout au long de la vie. L’hématopoïèse est généralement décrite de façon hiérarchique avec, au sommet, les cellules souches hématopoïétiques qui s’autorenouvellent et se différencient en progéniteurs puis en cellules matures. La voie de signalisation NOTCH canonique, contrôle l’activité du facteur de transcription RBPJ. Elle joue un rôle dans le développement des lymphocytes T et la spécification de la différenciation des cellules souches hématopoïétiques normales vers la lignée mégacaryocytaire. Les protéines de la famille OTT1 (OTT1, OTT3 et SHARP) s’expriment de façon ubiquitaire et sont impliquées dans le contrôle de l’activité de RBPJ. Les modalités de régulation de ces activités et l’intégration de signaux provenant d’autres voies de signalisation sont mal caractérisées. L’utilisation d’un modèle de différenciation in vitro de cellules souches hématopoïétiques sur des cellules stromales (OP9) exprimant le ligand NOTCH Delta-like 1 (DL1) ainsi que l’utilisation de modèles murins, nous a permis de montrer un lien entre la voie NOTCH et la voie PI3K/AKT dans le développement mégacaryocytaire. Nos résultats indiquent que la différenciation mégacaryocytaire peut être engagée à partir de progéniteurs myéloïdes engagés dépendant principalement de la voie PI3K/AKT, mais également directement à partir de cellules souches hématopoïétiques pour lesquelles une activation de la voie PI3K/AKT conduit à une synergie avec la voie NOTCH, mais n’est pas essentielle à la spécification mégacaryocytaire. D’autre part, pour comprendre le mécanisme de régulation de la protéine OTT1, j’ai recherché ses partenaires protéiques par crible double hybride chez la levure, et identifié des interactions avec, entre autres, des protéines à activité tyrosine kinase de la famille SRC (dont LYN) et SHARP. La spécificité d’interaction entre OTT1 et LYN a été validée dans un modèle de surexpression ainsi que dans une lignée modélisant la leucémie aigüe mégacaryocytaire. Dans nos modèles, l’interaction avec LYN conduit à la phosphorylation d’OTT1. Les analyses fonctionnelles préliminaires n’ont pas permis à ce jour de mettre en évidence un rôle essentiel de cette interaction dans le développement mégacaryocytaire. / Hematopoiesis is generally described as a hierarchical system, with at the top hematopoietic stem cells which self-renew and differentiate in progenitors, then in mature cells. Canonical Notch signaling controls RBPJ transcriptional activity. It plays a role in T lymphocyte development and stem cell fate. OTT1 family proteins (OTT1, OTT3 and SHARP) are expressed ubiquitously and are implied in control of RBPJ activity. The regulation of these activities and signal integration are all not well characterised. The use of an in vitro model of differentiation for hematopoietic stem cells on OP9 stroma cells expressing the NOTCH Delta-like-1 (DL1) ligand and the use of murine models, allowed us to show a link between NOTCH and PI3K/AKT in megakaryocytic development. Our results indicate that megakaryocytic differentiation can be engaged from myeloid progenitors depending mostly on the PI3K pathway but also from hematopoietic stem cells for which, an activation of PI3K/AKT lead to a synergy with NOTCH, but is not essential for megakaryocytic specification. On the other hand, to understand OTT1’s mechanisms of regulation, I looked for proteic binding partners by the double hybrid screen technique. Among the candidates I identified SHARP and SRC family kinases as LYN. The specific interaction between OTT1 and LYN was validated in a overexpression model and in a cell line modeling acute megakaryoblastic leukemia. In our models, the interaction with LYN lead to the phosphorylation of OTT1. However, the first analysis did not point out an essential role of this interaction in megakaryocytic development.
6

Apport de pathologies plaquettaires rares à la compréhension des rôles de CalDAG-GEFI et des kindlines dans l'activation de l'intégrine αIIbß3

Ghalloussi, Dorsaf 15 March 2016 (has links)
L’étude de l’identification des défauts moléculaires mis jeu dans les pathologies héréditaires plaquettaires est d’un apport considérable pour améliorer la compréhension des mécanismes physiologiques. Durant ma thèse, j’ai étudié les plaquettes d’individus appartenant à deux familles distinctes souffrant de dysfonctions plaquettaires à l’origine d’hémorragies sévères. Par séquençage entier des exons, nous avons identifié pour la première famille une mutation du gène RASGRP2 à l’origine de la substitution Gβ48W empêchant l’activation de CalDAG-GEFI. Les plaquettes des individus porteurs de la mutation à l’état homozygote ont une capacité réduite à activer Rap1 et l’intégrine αIIbß3 en réponse à de faibles doses d'agonistes. La présence d'un allèle non muté (hétérozygotie) est suffisante pour prévenir lessaignements mais ne permet pas de rétablir totalement une fonction plaquettaire normale. La deuxième famille est porteuse d’une mutation du gène FERMT3 (pN54RfsX142) conduisant à une absence complète de kindline-3. Les plaquettes homozygotes pour cette mutation sont incapables d’activer l’intégrine αIIbß3. Elles forment des filopodes et desnodules d’actine mais ne peuvent étendre des lamellipodes même en présence de Mn2+. La kindline-3 s’est révélée essentielle à la régulation de l’activité de Cdc4β et au réarrangement au cytosquelette d'actine lors de la signalisation «outside-in» de l’intégrineαIIbß3. Seule la kindline-3 a jusqu’ici été impliquée dans l'activation des intégrinesplaquettaires. Nous mettons en évidence la présence de kindline-2 dans les plaquettes et les mégacaryocytes humains. Des localisations différentes ont été mises en évidence pour ces deux kindlines. Dans le mégacaryocyte la kindline-2 se situe dans les zones d’adhérence focales et s’associe préférentiellement avec les intégrines ß3. Dans les plaquettes, seule la kindline-3 est présente dans nodules d’actine. Ces résultats sont en faveur de rôles non redondants des kindlines-2 et -γ et d’une implication potentielle de la kindline-2 dans la mégacaryopoïèse. / Inherited platelet disorders are rare diseases that give rise to severe bleeding when platelets fail to fulfill their hemostatic function upon vessel injury. Identifying the molecular mechanisms involved brings important insight into platelet pathophysiology. During my PhD, I studied platelets isolated from members of two families suffering severe bleedings among those one had no established diagnosis. In the first family, using whole exome sequencing, we identified a RASGRP2 mutation causing a G248W substitution leaving CalDAG-GEFI inactive. Platelets from individualscarrying the mutation exhibit a reduced ability to activate Rap1 and to perform proper Inherited platelet disorders are rare diseases that give rise to severe bleeding when platelets fail to fulfill their hemostatic function upon vessel injury. Identifying the molecular mechanisms involved brings important insight into platelet pathophysiology. During my PhD, I studied platelets isolated from members of two families suffering severe bleedings among those one had no established diagnosis. In the first family, using whole exome sequencing, we identified a RASGRP2 mutation causing a G248W substitution leaving CalDAG-GEFI inactive. Platelets from individuals carrying the mutation exhibit a reduced ability to activate Rap1 and to perform proper αIIbß3 integrin inside-out signaling in response to low doses agonists. The presence of a single normal allele is sufficient to prevent bleeding but does not allow normal platelet function. integrin inside-out signaling in response to low doses agonists. The presence of a single normal allele is sufficient to prevent bleeding but does not allow normal platelet function. Members of the second family carry a FERMT3 mutation leading to a completekindlin-3 deficiency (pN54RfsX142). Platelets from the homozygous patient are unable to perform proper integrin αIIbß3 activation. We now observe that kindlin-3 deficient platelets form filipodia and actin nodules but are unable to extend lamellipodia even in presence of Mn2+. We demonstrate that kindlin-3 is essential for Cdc42 activity regulation and actincytoskeleton remodeling during αIIbß3 integrin outside-in signaling To date, only the kindlin-3 has been involved in integrin activation. We show that kindlin-2 is present in human platelets and megakaryocytes. Both kindlins exhibit distinctlocalizations. In megakaryocytes, kindlin-2 specifically localizes within focal adhesion and associates preferentially with ß3 integrins. In platelets, unlike kindline-2, kindline-3 is located in actin nodule. All together these data argue in favor of specific roles played by each kindlins and a possible implication of kindlin-2 in megakaryocytopoiesis.
7

Étude des effets de l'hyperthermie légère sur la prolifération et la différenciation des cellules hématopoïétiques CD34⁺ issues de sang de cordon ombilical

Boucher, Jean-François 12 April 2018 (has links)
La mégacaryopoïèse est le mécanisme par lequel les cellules souches hématopoïétiques se différencient en cellules mégacaryocytaires. Notre équipe a récemment découvert que la culture des cellules CD34+ issus de sang de cordon ombilical sous condition d'hyperthermie légère (39°C) accélère la différenciation des mégacaryocytes. Le but de ces travaux était de mieux caractériser l'effet de l'hyperthermie sur nos cellules et d'identifier le mécanisme d'action sur la mégacaryopoïèse. Nous avons découvert que l'impact sur la différenciation mégacaryocytaire était rapide et que l'optimisation du temps de culture à 39°C augmentait le nombre de mégacaryocytes. L'hyperthermie légère avait peu d'effets sur la viabilité cellulaire mais diminuait légèrement le degré de ploïdie des mégacaryocytes. De plus, les cellules maintenues à 39°C avaient un temps moyen de division plus court et une augmentation significative du nombre de cellules en cycle cellulaire actif. Finalement, une analyse par PCR a révélé une diminution d'expression de plusieurs gènes régulant le cycle cellulaire.
8

Monitoring and mathematical modeling of in vitro human megakaryocyte expansion and maturation dynamics

Leysi-Derilou, Younes 17 April 2018 (has links)
La mégakaryopoïèse est un processus complexe, qui prend naissance à partir des cellules souches hématopoïétiques (HSC). Ces dernières se différencient par étapes successives en mégakaryocytes (MKs) qui, suite à leur maturation, libèrent les plaquettes. Afin de modéliser le sort des HSCs lors de la mégakaryopoïèse en culture, un nouveau modèle mathématique a été développé, basé sur un programme de différenciation tridimensionnelle (3-D) où chaque sous-population est représentée par un compartiment. Dans le but d’évaluer la prolifération, la différenciation des MKs immatures puis matures, la cinétique de mort cellulaire ainsi que le nombre de plaquettes produites, à partir des cellules de sang de cordon (CB) ombilical enrichies en CD34+, un ensemble d'équations différentielles a été déployé. Les cellules CD34+ ont été placées en culture dans un milieu optimisé pour la différenciation mégakaryocytaire. Les paramètres cinétiques ont été estimés pour deux températures d'incubation (37°C versus 39°C). Les résultats des régressions ont été validés par l'évaluation de l'estimabilité des paramètres, en utilisant des analyses de sensibilité locale et globale, puis la détermination d'un intervalle de confiance. Ceux-ci ont été comparés par le biais de tests statistiques et d’analyses en composante principale (ACP). Le modèle proposé pourrait permettre de mieux comprendre les phénomènes complexes observés. Les MKs sont uniques parmi les cellules hématopoïétiques, étant les seules à devenir polyploïdes au cours de leur développement par l’entremise de l’endomitose, un processus mitotique qui se termine prématurément durant la cytocinèse. Pour obtenir une image plus complète et exhaustive de la mégacaryopoïèse, une approche d’imagerie cellulaire à grand champ et à long terme a été développée permettant de suivre individuellement l'évolution des HSCs lors de leur différenciation ex vivo. Cela a permis de démontrer que les MKs polyploïdes sont encore capables de se diviser et de produire des cellules filles polyploïdes, et que ce processus est plus fréquent chez les MKs issues de CB que de moelle osseuse d'adulte. De plus, le processus de formation des proplaquettes semble également réversible. Les phénomènes énoncés plus haut étaient inversement proportionnels au niveau de ploïdie des MKs. En conclusion, cette étude a dévoilé de nouvelles propriétés jusqu’ici inconnues des MKs. / Megakaryopoiesis is a complex process, which is initiated with the proliferation and the differentiation of hematopoietic stem cells (HSC) into megakaryocytes (MK), followed by the maturation of MK and ended by platelet release. To describe the fates of HSC during ex vivo megakaryopoiesis, a new mathematical model was developed based on a 3-dimensional kinetic developmental program. To address this, a set of differential equations was applied to analyze the proliferation, differentiation and death kinetic rates of purified cord blood (CB)-CD34+ cells, immature and mature MKs, as well as platelet number and productivity. CB-CD34+ cells were placed in culture optimized for MK differentiation. The kinetic parameters were estimated for two incubation temperatures (37°C vs. 39°C). The regression results have been validated by assessing the parameter identifiability using local and global sensitivity analyses and confidence intervals, and compared using statistical tests and principal component analysis (PCA). Furthermore, PCA was applied on the solution matrix to construct a simplified MK differentiation pathway model, and to reveal dependencies among the model parameters. The proposed model provides insight into phenomena that would be otherwise difficult to interpret. MKs are unique among mammalian marrow cells as they polyploidize during their natural development. It is universally accepted that MK becomes polyploid by repeatedly deviating from normal cell cycling, where it ceases to complete cytokinesis and divide. To challenge this long-standing hypothesis and to obtain a more comprehensive picture of megakaryopoiesis, a long-term and large-field live cell imaging approach of in vitro MK culture was developed. Using CB- and bone marrow (BM)-CD34+ as starting cells, the direct observation of cells undergoing differentiation and maturation over a 5-day culture period is reported for the first time. Herein, direct visual proof that polyploid MKs can complete cytokinesis during its normal development is presented. This phenomenon was found not restricted to CB- as the BM-derived polyploid MK also underwent division. However the latter showed significantly lower proliferation rate. This new finding explains in part the unresolved issue of low ploidy levels observed in CB-MK and contests the notion that polyploid MKs do not divide.
9

The Role of DIAPH1 in the Megakaryopoiesis / Le rôle de DIAPH1 dans la mégacaryopoïèse

Pan, Jiajia 26 November 2014 (has links)
Les mégacaryocytes sont les précurseurs cellulaires hautement spécialisés qui produisent des plaquettes via des extensions cytoplasmiques appelées proplaquettes. La formation des proplaquettes exige de profonds changements dans l’organisation du cytosquelette: microtubules et actine. Les formines sont une famille de protéines hautement conservées chez les eucaryotes composées de plusieurs domaines qui régulent le remodelage et la dynamique du cytosquelette d'actine et des microtubules. La plupart des formines sont des effecteurs protéiques des Rho-GTPase. DIAPH1, un membre de la famille des formines, est un homologue chez les mammifères du gène diaphanous de la drosophile qui fonctionne comme un effecteur de la petite GTPase Rho et régule le cytosquelette d'actomyosine ainsi que les microtubules. Il contient le domaine de liaison à Rho (Rho-binding domain) dans la partie amino-terminale et deux régions distinctes d’homologie aux formines, FH1 localisée au centre de la protéine et FH2 dans la partie carboxy-terminale. DIAPH1 co-régule le cytosquelette des microtubules et d'actine à travers respectivement ses régions de FH2 et FH1. DIAPH1 est donc un gène candidat idéal dans toutes les fonctions cellulaires qui exigent une coopération entre cytosquelettes d’actine et de microtubules.L'objectif de ce projet de thèse était d’étudier le rôle de DIAPH1 dans la mégacaryopoïèse. A la fin de la maturation des mégacaryocytes, la formation de proplquettes et la migration sont associées à des modifications importantes de la structure du cytosquelette. Nous avons émis l’hypothèse que grâce à la sa double fonction dans la polymérisation de l'actine et la stabilisation des microtubules, DIAPH1 pourrait jouer un rôle essentiel dans les temps terminaux de la différenciation mégacaryocytaire.Nos résultats ont montré qu’au cours de la différenciation mégacaryocytaire, l’expression de DIAPH1 augmente, alors que celles de DIAPH2 et DIAPH3 diminuent, ce qui suggère que DIAPH1 pourrait jouer un rôle plus important que DIAPH2 et DIAPH3 dans les stades tardifs de la différenciation mégacaryocytaire. Les études en immunomarquage montrent que DIAPH1 co-localise avec l’actine F, la tubuline et la myosine IIa en niveau de la membrane plasmique et des proplaquettes. Nous avons étudié la fonction de DIAPH1 par des stratégies d’invalidation (knockdown) et de surexpression d’une forme active de DIAPH1. Les résultats montrent que DIAPH1 est un effecteur important de Rho, pour réguler négativement la formation des proplaquettes en remodelant le cytosquelette d’actine et les microtubules. Le travail antérieur de notre équipe avait montré que Rho-ROCK régulait aussi négativement la formation des proplaquettes, en inhibant l’activation de la myosine IIa. En inhibant simultanément DIAPH1 et ROCK/myosine, nous avons montré que ces deux voies jouent un rôle additif dans la formation des proplaquettes.Ces résultats suggèrent que la coopération entre les voies DIAPH1 et ROCK/myosine est nécessaire pour la formation de structures cellulaire dépendant de l'actomyosine, telles les fibres de stress et l'anneau contractile en agissant à la fois sur le remodelage du cytosquelette et en assurant un équilibre entre l'actomyosine et microtubules. / Megakaryocytes (MKs) are the highly specialized precursor cells that produce platelets via cytoplasm extensions called proplatelets. Proplatelet formation (PPF) requires profound changes in microtubule and actin organization. Formins are a family of highly conserved eukaryotic proteins with multidomains that govern dynamic remodeling of the actin and microtubule cytoskeletons. Most formins are Rho-GTPase effectors proteins. DIAPH1, a member of the formin family, is a mammalian homolog of Drosophila diaphanous gene that works as an effector of the small GTPase Rho and regulates the actomyosin cytoskeleton as well as microtubules. It contains the Rho-binding domain in the N-terminal and two distinct regions of formin homology, FH1 in the center and FH2 in the C-terminus. DIAPH coordinates microtubules and actin cytoskeleton through its FH2 and FH1 regions respectively, making DIAPH an ideal candidate in cell functions that depend closely on the cooperation between the actin and microtubule cytoskeletons.The objective of the project was to decipher the role of DIAPH1 in megakaryopoiesis. At the end of the MK maturation, PPF and MK migration are associated with profound changes in cytoskeleton organization. Due to its dual function in actin polymerization and microtubule stabilization, DIAPH1 was an obvious candidate to play an essential role in PPF and MK migration.Our results showed that DIAPH1 expression increased during MK differentiation, whereas DIAPH2 and DIAPH3 expression decreased, suggesting that DIAPH1 may play a more important role than DIAPH2 and DIAPH3 in the late stages of MK differentiation. Immunostaining showed that DIAPH1 co-localized with F-actin, tubulin and myosin IIa along the plasma membrane and proplatelet. Using a knockdown strategy with shRNA and expression of an active form of DIAPH1, we showed that DIAPH1 is an important effector of Rho that negatively regulates PPF by remodeling actin and microtubule cytoskeletons. A previous work of our team has shown that Rho-ROCK also negatively regulates in PPF by inhibiting myosin IIa activation. By the double inhibition of the DIAPH1 and the ROCK/Myosin pathway, we showed that DIAPH1 and ROCK played additive roles in the negative regulation of PPF. These observations suggest that the cooperation between DIAPH1 and ROCK is required for the formation of cell structures dependent on actomyosin, such as the stress fibers and the contractile ring. Collectively, these results strongly suggest that cooperation of DIAPH1/microtubules and ROCK/Myosin may regulate PPF by modifying the balance between actomyosin and microtubules.
10

Caractérisation du rôle de SCL dans la mégacaryopoïèse et la thrombopoïèse chez les souris transgéniques

Sedzro, Josepha-Clara 12 1900 (has links)
No description available.

Page generated in 0.0426 seconds