Spelling suggestions: "subject:"mélange dde fréquence"" "subject:"mélange dee fréquence""
1 |
Electromagnetic microsystem for the detection of magnetic nanoparticles in a microfluidic structure for immunoassays / Système électromagnétique de détection de nanoparticules magnétiques dans une structure microfluidique pour l'immunodétectionRabehi, Amine 30 January 2018 (has links)
La détection et quantification d’agent biologique occupe une place prépondérante dans la prévention et la détection des dangers possibles pour la santé publique (épidémie ou pandémie), l’environnement ainsi que d’autres risques contextuelles (bioterrorisme, armes biologique ou chimiques…etc.). Par conséquent, le développement d’un système portable et à moindre coût permettant de détecter ces dangers constitue l’axe de recherche pluridisciplinaire de la collaboration entre différents laboratoires de l’UPMC (Paris 6) et « RWTH university » à Aachen en Allemagne. Dans ce projet, nous avons étudié les aspects pluridisciplinaires d’un microsystème (LoC) électromagnétique de détection immunologique basé sur l’utilisation de nanoparticules magnétiques (MNP). En raison de leur extractabilité et de leur triabilité, les MNP sont adaptées à l'examen d'échantillons biologiques, servant de marqueurs pour des réactions biochimiques. La plupart des techniques classiques de détection existantes sont basées sur des méthodes colorimétrique, fluorescence ou électrochimique qui souffrent en majorité de problème de temps d’analyse et de sensibilité. A cet égard, Les méthodes d’immuno-détection magnétiques constituent une alternative prometteuse. Cette détection est effectuée à l’aide des MNP qui sont spécifiquement bio-fonctionnalisés en surface afin d’être liée à la cible (virus, anticorps…etc). La nouvelle méthode magnétique de mélange de fréquence permet la détection et la quantification de ces MNP avec une grande dynamique. Dans cette thèse, l’effort est dirigé vers la miniaturisation de ce système. Pour ce faire, nous avons développé un ensemble d’outils analytiques et de simulations multiphysiques afin d’optimiser les dimensions des parties électromagnétique (bobines planaires) et microfluidiques. Par la suite, des prototypes de cette structure de détection à partir de bobines en circuits imprimés et de réservoirs microfluidiques en PDMS sont dimensionnés et réalisés. Les performances de ces prototypes ont été évaluées en termes de limite de détection de MNP, linéarité et plage dynamique. En outre, ces prototypes ont permis de valider les outils de dimensionnement réalisés. Une limite de détection de nanoparticules magnétiques de 15ng/mL a été mesurée avec un volume d'échantillon de 14 μL correspondant à une goutte de sang. Finalement, la validation du système quant à l’immuno-détection est abordée avec un état de l’art et le développement d’une procédure de fonctionnalisation biochimique de surface ainsi que des premiers tests pour sa validation. / The detection and quantification of a biological agent or entity has become paramount to anticipate a possible health threat (epidemic or pandemic), environmental threat or to combat other contextual threats (bioterrorism, chemical and biological weapons, drugs). Consequently, developing a portable cost effective device that could detect and quantify such threats is the research focus of the joint multidisciplinary project between UPMC (Paris 6) laboratories and RWTH university in Aachen, Germany. In the framework of this project, we have studied the multidisciplinary aspects of an electromagnetic microsystem for immunologic detection based on magnetic nanoparticles (MNP) in a microfluidic lab-on-chip (LoC). Because of their extractability and sortability, magnetic nanoparticles are adapted for examination of biological samples, serving as markers for biochemical reactions. So far, the final detection step is mostly achieved by well-known immunochemical or fluorescence-based techniques which are time consuming and have limited sensitivity. Therefore, magnetic immunoassays detecting the analyte by means of magnetic markers constitute a promising alternative. MNP covered with biocompatible surface coating can be specifically bound to analytes, cells, viruses or bacteria. They can also be used for separation and concentration enhancement. The novel frequency mixing magnetic detection method allows quantifying magnetic nanoparticles with a very large dynamic measurement range. In this thesis, emphasis is put on the miniaturized implementation of this detection scheme. Following the development of analytical and multiphysics simulations tools for optimization of both excitation frequencies and detection planar coils, first multilayered printed circuit board prototypes integrating all three different coils along with an adapted microfluidic chip has been designed and realized. These prototypes have been tested and characterized with respect to their performance for limit of detection (LOD) of MNP, linear response and validation of theoretical concepts. Using the frequency mixing magnetic detection technique, a LOD of 15ng/mL for 20 nm core sized MNP has been achieved with a sample volume of 14 μL corresponding to a drop of blood. Preliminary works for biosensing have also been achieved with a state of the art of surface functionalization and a developed proposed biochemical immobilization procedure and preliminary tests of its validation.
|
2 |
Optique non-linéaire résonante dans les lasers à cascade quantique / Resonant nonlinear optics in quantum cascade lasersHouver, Sarah 27 April 2017 (has links)
Les lasers à cascade quantiques (LCQ) sont des sources puissantes de rayonnement térahertz (THz) et moyen infrarouge (MIR). Elles reposent sur une transition intersousbande dans la bande de conduction des nanostructures semiconductrices constituant le LCQ. Ce travail de thèse présente une étude fondamentale de l'optique non-linéaire résonante dans les LCQ. La génération de mélange de fréquences entre un LCQ THz ou MIR et un faisceau proche infrarouge (NIR) est démontrée dans la cavité même du LCQ. Les non-linéarités des puits quantiques constituant la zone active du LCQ sont exaltées grâce à une excitation NIR résonante avec les transitions interbandes et grâce au photon du LCQ résonant avec les transitions intersousbandes de la structure. Ces excitations résonantes entrainent une forte exaltation de la susceptibilité non-linéaire, permettant une interaction efficace sans considération pour l'accord de phase. De précédentes études limitées aux températures cryogéniques, ont mis en évidence le mélange d'ondes résonant entre un LCQ THz basé sur GaAs et un faisceau NIR à 800 nm. Le travail novateur de cette thèse montre que le mélange d'ondes résonant dans les LCQ peut être étendu à la gamme des LCQ MIR et à des excitations de pompe dans le domaine télécom, à température ambiante. De plus, les limites liées à l'absorption sous excitation résonante ont été en partie dépassées, grâce à une géométrie en réflexion. Ce travail a permis une compréhension approfondie des non-linéarités interbandes et intersousbandes résonantes dans les LCQ, ouvrant la voie vers des applications potentielles telles que le décalage de longueurs d'ondes tout-optique pour les télécommunications. / Quantum cascade lasers (QCLs) are powerful terahertz (THz) and mid-infrared (MIR) sources. Their emission relies on intersubband transitions i.e. transitions between confined electronic states in the conduction band of these semiconductor nanostructure-based lasers.This PhD thesis presents a fundamental study of resonant nonlinear optics in QCLs. Nonlinear frequency mixing between a THz or MIR QCL photon and a near infrared (NIR) pump has been shown within the QCL cavity. Nonlinearities from the QCL active region, composed of a set of quantum wells, can be enhanced owing to a NIR excitation that is resonance with interband transitions, and with the QCL photon in resonance with intersubband transitions. These resonant excitations permit a strong exaltation of the nonlinear susceptibility, allowing an efficient interaction without considerations of phase matching. Previous studies, limited to cryogenic temperatures, have shown nonlinear frequency mixing between a GaAs based THz QCL and an 800 nm NIR beam.This thesis presents an original work highlighting that resonant nonlinear optics in QCLs can be extended to the MIR, and to telecom range pump excitations, at room temperature. Furthermore, previously limits related to absorption at resonant excitations have also been partially overcome, by proposing a geometry in reflection.As well as proving an in-depth understanding of interband and intersubband nonlinearities in QCLs, this work paves the way to potential applications such as all optical wavelength shifting for telecommunications, and the up-conversion of THz and MIR photons into thetechnologically mature NIR range.
|
3 |
Large volume multicolor nonlinear microscopy of neural tissues / Microscopie non linéaire multicolore de grands volumes de tissu cérébralAbdeladim, Lamiae 27 September 2018 (has links)
La microscopie non linéaire a transformé le domaine de la neurobiologie depuis les années 1990, en permettant d'acquérir des images tridimensionnelles de tissus épais avec une résolution subcellulaire. Cependant, les profondeurs d'imagerie accessibles sont limitées à quelques centaines de micromètres dans des tissus diffusants tels que le tissu cérébral. Au cours des dernières années, plusieurs stratégies ont été développées pour dépasser cette limitation de profondeur et accéder à de plus grands volumes de tissu. Ces avancées récentes ont jusqu'à présent été limitées en terme de modes de contrastes accessibles, et ont souvent été réduites à des approches monochromes. Ce travail de thèse vise à développer des techniques d'imagerie non linéaires de grands volumes et de grande profondeur dotées de diverses possibilités de contrastes, indispensables pour l'étude de tissus complexes tels que le tissu cérébral. Dans un premier chapitre, nous présentons les difficultés associées à l'imagerie de grand volume de tissu cérébral, avec une emphase particulière sur les puissantes stratégies de marquages génétiques dont l'usage à jusqu'à présent été limité à des faibles étendues. Ensuite, nous introduisons la microscopie Chrom-SMP (chromatic serial multiphoton), une méthode développée au cours de cette thèse et consistant à combiner l’excitation deux-photon multicouleurs par mélange de fréquences avec une technique d'histologie automatisée (i.e découpe sériée) pour accéder à plusieurs contrastes non linéaires à travers de grands volumes de tissus ex vivo, allant de plusieurs mm3 à des cerveaux entiers, avec une résolution micrométrique et un coalignement intrinsèque des canaux spectraux. Dans un troisième chapitre, nous explorons le potentiel de cette nouvelle approche pour la neurobiologie. En particulier, nous démontrons l'histologie multicouleur de plusieurs mm3 de tissu "Brainbow" avec une résolution constante dans l’ensemble du volume imagé. Nous illustrons le potentiel de notre approche à travers l'analyse de la morphologie, des interactions et du lignage des astrocytes du cortex cérébral de souris. Nous explorons également l’apport du Chrom-SMP pour le suivi multiplexé de projections neuronales marquées par des traceurs de couleurs distinctes sur de grandes distances. Enfin, nous présentons dans un quatrième chapitre le développement de la microscopie à trois photons multimodale, approche permettant d’augmenter la profondeur d’imagerie sur tissus vivants. / Multiphoton microscopy has transformed neurobiology since the 1990s by enabling 3D imaging of thick tissues at subcellular resolution. However the depths provided by multiphoton microscopy are limited to a few hundreds of micrometers inside scattering tissues such as the brain. In the recent years, several strategies have emerged to overcome this depth limitation and to access larger volumes of tissue. Although these novel approaches are transforming brain imaging, they currently lack efficient multicolor and multicontrast modalities. This work aims at developing large-scale and deep-tissue multiphoton imaging modalities with augmented contrast capabilities. In a first chapter, we present the challenges of high-content large-volume brain imaging, with a particular emphasis on powerful multicolor labeling strategies which have so far been restricted to limited scales. We then introduce chromatic serial multiphoton (Chrom-SMP) microscopy, a method which combines automated histology with multicolor two-photon excitation through wavelength-mixing to access multiple nonlinear contrasts across large volumes, from several mm3 to whole brains, with submicron resolution and intrinsic channel registration. In a third chapter, we explore the potential of this novel approach to open novel experimental paradigms in neurobiological studies. In particular, we demonstrate multicolor volumetric histology of several mm3 of Brainbow-labeled tissues with preserved diffraction-limited resolution and illustrate the strengths of this method through color-based tridimensional analysis of astrocyte morphology, interactions and lineage in the mouse cerebral cortex. We further illustrate the potential of the method through multiplexed whole-brain mapping of axonal projections labeled with distinct tracers. Finally, we develop multimodal three-photon microscopy as a method to access larger depths in live settings.
|
Page generated in 0.0543 seconds