Spelling suggestions: "subject:"méthode postclassique"" "subject:"méthode classique""
1 |
Particules bimétalliques. Synthèse, caractérisation et propriétés catalytiques / Synthesis and characterization of bimetallic Pt/Ni particles for the application of catalysisAbu Bakar, Noor Hana Hanif 02 March 2010 (has links)
La synthèse des catalyseurs bi-métalliques de PtNi supportés sur silice et préparés par une méthode non-classique a été étudiée de manière approfondie en utilisant le borohydrure de sodium (NaBH4) comme réducteur du précurseur métallique. En général, les catalyseurs qui ont été préparés par la technique de co-imprégnation donnent une meilleure réactivité catalytique pour l'hydrogénation du benzène en cyclohexane en phase gazeuse, comparée à celles donnée par la co-précipitation, par l'imprégnation par étapes et par l'utilisation d'acide oléique. Plusieurs catalyseurs bimetalliques ont démontré une meilleure réactivité que le catalyseur mono-métallique Pt. Les recherches ont prouvé que l'amélioration de la réactivité peut être attribuée à la formation d'alliage de Pt et Ni accompagnée de la ségrégation du Pt sur l'alliage. L'effet de plusieurs paramètres de réduction a été également étudié. Les variations de ces paramètres affectent la morphologie et la dispersion des particules PtNi. La réactivité catalytique optimum a été obtenue lors de la formation de petites particules PtNi dispersées à la température de 273 K avec 0.3 M de NaBH4 en solution dans l'éthanol. Les méthodes classiques aussi ont été utilisées pour la synthèse des catalyseurs PtNi supportés. Plusieurs des catalyseurs ont montré une meilleure réactivité que le Pt. On a trouvé qu'elle est attribuable à l'effet d'ancrage des ions de Ni2+ sur le support et la fixation de particules Pt très petites et bien dispersées sur ces ions. En conclusion, il apparaît dans ce travail que les particules bimétalliques supportées, combinées en alliage ou non, peuvent donner lieu à une meilleure réactivité que les catalyseurs monométalliques. Cependant, plusieurs paramètres affectent la surface de la phase métallique des catalyseurs. Par conséquent, nos résultats montrent qu'il est impératif de comprendre et de contrôler ces paramètres pour synthétiser les catalyseurs possédant les meilleures propriétés. / The synthesis of PtNi bimetallic particles supported silica catalysts, prepared via non-classical methods using sodium borohydride (NaBH4) as a reducing agent, was studied in detail. The silica supports employed in this work is limited to crystalline silica and mesoporous aluminosilicate (MCM-41). Various preparation techniques as well as reduction parameters were investigated to gain an insight on how these factors influenced the final structure of the PtNi particles on the silica support and their catalytic reactivity towards the hydrogenation of benzene to cyclohexane. It was found that this reduction method enabled total reduction of the metal salts during the preparation stage of the catalysts. Hydrogen consumptions which were detected using H2-TPR analysis were mainly attributed to surface oxidation of the metal phase during storage. Studies on the effect of preparation techniques showed that the surface and catalytic properties of the catalysts are largely affected by the PtNi ratio as well as the method in which the metal salts are introduced onto the support. Catalysts prepared via co-impregnation technique generally exhibited better catalytic reactivity when compared to those prepared via co-precipitation and step-impregnation techniques. Further, catalysts with higher Ni content showed a tendency towards lower reactivity in contrast to those with high Pt content. Several catalysts demonstrated enhanced reactivity when compared to the monometallic Pt catalysts. Investigations showed that the improved reactivity can be attributed to alloying of the Pt and Ni accompanied by surface segregation of Pt. As a means to improve catalytic reactivity, PtNi stabilized oleic acid particles were synthesized prior to incorporation onto a silica support. The intention of this study is to allow better control of the dispersion and alloying between the PtNi particles. Results show that though better dispersed alloys were obtained, very low activity was observed. Nickel surface segregation is likely to be the cause of this due to the presence of oxygen from oleic acid. The effect of several reduction parameters was also investigated to enhance catalytic reactivity. The reduction temperature, NaBH4 concentration and medium in which reduction was carried out were varied. Variations in these parameters affected the particle morphology and dispersion of the PtNi particles. Optimum catalytic reactivity was obtained when small dispersed PtNi particles were formed at 273 K using 0.3 M NaBH4 in a medium of ethanol. Classical methods were also used for the synthesis of PtNi supported catalysts. In this study the PtNi particles were formed using H2 gas as the reducing agent. Several catalysts showed improved reactivity. Investigations show that this is attributed to the anchoring effect of Ni2+ ions which anchors Pt to the support, forming fine dispersed Pt particles available for catalytic reaction. In general, it is obvious that alloyed and non – alloyed bimetallic particles supported on silica can lead to the enhancement of hydrogenation reactions when compared to the respective monometallic catalysts. However, the PtNi ratios, preparation techniques, environment in which the particles are reduced and support influences the structure of the metallic phase of these catalysts. Therefore it is imperative to gain a thorough understanding on these parameters, in order to synthesize catalysts with desired properties.
|
2 |
Development of a quasi-classical method and application to the infrared spectroscopy / Développement d'une méthode quasi-classique et application à la spectroscopie vibrationnelleBeutier, Julien 12 February 2016 (has links)
Le calcul de quantités dépendants du temps pour des systèmes quantiques est limité le scaling exponentiel des méthodes exactes. Néanmoins, ces quantités présentes un intérêt scientifique important. Un compromis, entre précision et coût, est trouvé par les méthodes quasi-classiques. Dans ces méthodes, la densité thermique exacte est combinée à des trajectoires approximant la dynamique quantique. Durant ma thèse, j’ai développé et appliqué une méthode quasi-classique : PIM (Phase Integration Methode) qui combine des algorithmes MC et MD pour calculer des fonction de corrélation. Le Chapitre 2 décrit les méthodes quasi-classiques ainsi que les approximations qui permettent d’en tirer les fonctions de corrélations dépendants du temps.Le Chapitre 3 illustre comment PIM est adapté au calcul de la densité de Wigner qui est une quantité clé pour les méthodes quasi-classique. À travers le calcul de cette quantité, PIM est capable de capturer des corrélations entre différents degrés de liberté. Dans le Chapitre 4, on montre comment PIM est adapté au calcul de spectres infrarouge. La comparaison des résultats avec d’autres méthodes montre que PIM est une méthode précise pour les systèmes à basse dimensionnalité. Les spectres de OH et CH4 confirment que PIM ne souffrent pas de problèmes intrinsèques comme CMD ou RPMD et peut être appliqué à des systèmes à plus haute dimensionnalité. Le Chapitre 5 présente la méthodologie pour calculer des constantes de vitesse à l’aide de PIM. Les résultats sont bons jusqu’à 300 K mais pas en dessous. Le travail futur se concentrera sur le calcul de la fonction de corrélation de Kubo flux-side pour remédier à ce problème. / Simulation of time-dependent quantities for quantum systems is limited by the exponential scaling of exact methods. However, the calculation of these quantities is key in many problems. A reasonable compromise among accuracy and cost is done by the quasi-classical methods for computing time correlation functions. In these methods, the thermal density is combined with trajectories that approximate quantum dynamics. In my thesis, I develop and apply quasi-classical methods for vibrational spectroscopy. The focus is on the Phase Integration Method. PIM is based on combining MD and MC algorithms to compute appropriate quantities. Chapter 2 is devoted to a general description of the quasi-classical methods. We introduce the different approximations used to compute quantum time correlation functions. Chapter 3 illustrates how PIM is adapted to the calculation of the Wigner density, which is a key quantity in quasi-classical methods. Via this quantity, we show that PIM is able to capture quantum correlation effects among different degrees of freedom. Chapter 4 focuses on the adaptation of PIM for the infrared spectroscopy. Comparison of our results, show that PIM is accurate for low dimensional models. OH and CH4 spectrum confirms that our approach does not suffer from the pathologies such as CMD and RPMD but also that it can treat systems with a larger number of degrees of freedom reliably. Chapter 5 presents the methodology used to calculate rate constants with PIM. The results are in good agreement with the exact reference until 300 K. Future work will focus on using the Kubo flux side correlation function.
|
3 |
Experimental and theoretical studies of infrared spectroscopic signatures of key atmospheric molecules : carbon dioxide CO2 and monodeuterated methane CH3D / Etudes expérimentales et théoriques des signatures spectroscopiques infrarouges de molécules atmosphériques clés : dioxyde de carbone CO2 et Méthane monodeutéré CH3DSinyakova, Tatyana 25 November 2016 (has links)
Le présent travail de thèse a porté sur l’étude expérimentale et théorique de signatures spectroscopiques de molécules atmosphériques clés: CO2 et CH3D. 11 a été divise en partie expérimentale, consacrée aux mesures a haute pression des spectres IR CO2, et a la partie théorique, a. savoir le calcul des largeurs de ligne de collision pour CH3D perturbé par divers gaz. Dans la première partie, j'ai présenté des mesures &absorption de CO2 a haute pression a température ambiance dans l'intervalle spectral 600-9650 cm (sondes dans des études d’atmosphère planétaire) pour deux raisons principales: fournit des données exactes et étendues et suivre l’évolution de effets de "line-mixing" avec des variations graduelles de pression. Dans la deuxième partie, j'ai présenté des calculs semi-classiques des coefficients d'élargissement de CH3D -N2 (-H2) en utilisant le modèle de trajectoire exacte dans les bandes v3 parallèles et perpendiculaires vs, v6 de CH3D ---N2 ainsi que dans la bande v3 parallèle de CH3D -142 pour de grands intervalles les de nombres quantiques de rotation requis pour les bases de données spectroscopiques. / Present Ph.D work has focused on experimental and theoretical studying of spectroscopic signatures of key atmospheric molecules: CO2 and CH3D. It was divided into experimental part, devoted to high-pressure measurements of IR CO2 spectra, and theoretical part, namely calculation of collisional line-widths for CH3D perturbed by various gases. In the first part, I reported room-temperature high-pressure CO2 absorption measurements in the spectral interval 600-9650 cm-1 (probed in planetary atmosphere studies) with the double goals: to provide accurate and extensive data and to trace evolution of the line-mixing effects with gradual pressure variations. In the second part, I presented semi-classical calculations of CH3D-N2 and -142 line-broadening coefficients using exact trajectory model in the parallel v3 and perpendicular vs, v6 bands of CH3D-N2 as well as in the parallel v3 band of CH3D-112 for large intervals of rotational quantum numbers required for spectroscopic databases.
|
4 |
Modélisation des propriétés de transport des ions moléculaires de krypton et xénon pour l'optimisation des générateurs de plasma froids utilisant les gaz rares / Modeling the transport properties of molecular ions of krypton and xenon for the optimization of cold plasma generators using rare gasesVan de Steen, Cyril 11 December 2018 (has links)
L'utilisation de plasmas froids à base de gaz rares (Rg) dans des applications biomédicales ainsi que dans la propulsion spatiale est en nette évolution. Pour optimiser ces réacteurs plasmas, une compréhension fine des processus ayant lieu dans ces réacteurs est nécessaire. Ce travail de thèse a pour objectif de fournir les données manquantes dans la littérature (coefficients de transport et réaction) en passant par des données mésoscopiques (sections efficaces) obtenues à partir de données microscopiques (potentiels d'interaction) pour le xénon et krypton dans leur gaz parent. Seul des plasmas froids composés d'un seul type d'atome sont considérés. Comme le krypton et le xénon sont des gaz rares, et ont donc, à l'état de neutralité peu/pas d'interaction entre eux. Par conséquent, seules les collisions ion - atome seront considérées. Du fait des faibles énergies des ions dans le plasma froid, seul les 6 premiers états excités du couple Rg2+ seront pris en compte. Ces 6 états seront classés en deux groupes, 2P1/2 et 2P3/2. Lors de ce travail, deux potentiels d'interaction différents disponibles dans la littérature sont utilisés et comparés pour les systèmes collisionnels Kr+/Kr et Xe+/Xe dans le calcul des sections efficaces. Pour les collisions impliquant des dimères ioniques (Kr2+/Kr et Xe2+/Xe), les potentiels d'interaction sont calculés à partir du modèle DIM (Diatomics In Molecules) qui est une combinaison des potentiels atomiques d'interaction neutre - neutre et ion - neutre. Les sections efficaces, requises pour obtenir les données mésoscopiques manquantes, sont calculées à partir de trois méthodes différentes. La première méthode est la méthode quantique qui permet, par une résolution de l'équation de Schrödinger, d'obtenir de manière exacte les sections efficaces à partir des potentiels d'interaction. Cette méthode exacte, étant grande consommatrice de temps de calcul, est utilisée en tant que référence pour valider les deux autres méthodes approchées. La seconde méthode, nommée semi-classique, est basée sur la même expression que la section efficace quantique mais utilise un déphasage approché (approximation JWKB), induit par le potentiel d'interaction, entre l'onde diffusée et l'onde incidente. [...] / The use of cold plasmas based on rare gases (Rg) in biomedical applications as well as in space propulsion is clearly evolving. To optimize these plasma reactors, a fine understanding of the processes taking place in these reactors is necessary. This thesis aims to provide the missing data in the literature (transport coefficients and reaction rates) through mesoscopic data (cross-sections) obtained from microscopic data (interaction potentials) for xenon and krypton in their parent gas. Only cold plasmas composed of a single type of atom are considered. As krypton and xenon are rare gases, and so have, in the neutral state little / no interaction between them. Therefore, only ion - atom collisions will be considered. Due to the low ion energies in the cold plasma, only the first 6 excited states of the Rg2+ pair will be taken into account. These 6 states will be classified in two groups, 2P1/2 and 2P3/2. In this work, two different interaction potentials available in the literature are used and compared for the Kr+/Kr and Xe+/Xe collision systems in the calculation of cross-sections. For collisions involving ionic dimers (Kr2+/Kr and Xe2+/Xe), the interaction potentials are calculated from the DIM model (Diatomics In Molecules) which is a combination of the atomic potentials of neutral - neutral and ionic - neutral interactions. The cross-sections required to obtain the missing mesoscopic data are calculated from three different methods. The first method is the quantum method which allows, by a resolution of the Schrödinger equation, to obtain exactly the cross-sections from the interaction potentials. This exact method, which consumes a lot of computation time, is used as a reference to validate the two other approximate methods. The second method, called semi-classical, is based on the same expression as the quantum cross section but uses an approximate phase shift (JWKB approximation), induced by the interaction potential, between the scattered wave and the incident wave. [...]
|
Page generated in 0.0471 seconds