• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formulation de la tomographie des temps de première arrivée par une méthode de gradient : un pas vers une tomographie interactive

Taillandier, Cédric 02 December 2008 (has links) (PDF)
La tomographie des temps de première arrivée cherche à estimer un modèle de vitesse de propagation des ondes sismiques à partir des temps de première arrivée pointés sur les sismogrammes. Le modèle de vitesse obtenu peut alors permettre une interprétation structurale du milieu ou bien servir de modèle initial pour d'autres traitements de l'imagerie sismique. Les domaines d'application de cette méthode s'étendent, à des échelles différentes, de la géotechnique à la sismologie en passant par la géophysique pétrolière. Le savoir-faire du géophysicien joue un rôle important dans la difficile résolution du problème tomographique non-linéaire et mal posé. De nombreuses recherches ont entrepris de faciliter et d'améliorer cette résolution par des approches mathématique ou physique. Dans le cadre de ce travail, nous souhaitons développer une approche pragmatique, c'est-à-dire que nous considérons que le problème tomographique doit être résolu par un algorithme interactif dont les paramètres de réglage sont clairement définis. L'aspect interactif de l'algorithme facilite l'acquisition du savoir-faire tomographique car il permet de réaliser, dans un temps raisonnable, de nombreuses simulations pour des paramétrisations différentes. Le but poursuivi dans cette thèse est de définir, pour le cas spécifique de la tomographie des temps de première arrivée, un algorithme qui réponde au mieux à ces critères. Les algorithmes de tomographie des temps de première arrivée classiquement mis en oeuvre aujourd'hui ne répondent pas à nos critères d'une approche pragmatique. En effet, leur implémentation ne permet pas d'exploiter l'architecture parallèle des supercalculateurs actuels pour réduire les temps de calcul. De plus, leur mise en oeuvre nécessite une paramétrisation rendue complexe du fait de la résolution du système linéaire tomographique. Toutes ces limitations pratiques sont liées à la formulation même de l'algorithme à partir de la méthode de Gauss-Newton. Cette thèse repose sur l'idée de formuler la résolution du problème tomographique à partir de la méthode de plus grande descente pour s'affranchir de ces limitations. L'étape clé de cette formulation réside dans le calcul du gradient de la fonction coût par rapport aux paramètres du modèle. Nous utilisons la méthode de l'état adjoint et une méthode définie à partir d'un tracé de rais a posteriori pour calculer ce gradient. Ces deux méthodes se distinguent par leur formulation, respectivement non-linéaire et linéarisée, et par leur mise en oeuvre pratique. Nous définissons ensuite clairement la paramétrisation du nouvel algorithme de tomographie et validons sur un supercalculateur ses propriétés pratiques : une parallélisation directe et efficace, une occupation mémoire indépendante du nombre de données observées et une mise en oeuvre simple. Finalement, nous présentons des résultats de tomographie pour des acquisitions de type sismique réfraction, 2-D et 3-D, synthétiques et réelles, marines et terrestres, qui valident le bon comportement de l'algorithme, en termes de résultats obtenus et de stabilité. La réalisation d'un grand nombre de simulations a été rendue possible par la rapidité d'exécution de l'algorithme, de l'ordre de quelques minutes en 2-D.
2

Formulation de la tomographie des temps de première arrivée à partir d'une méthode de gradient : un pas vers une tomographie interactive

Taillandier, Cédric 02 December 2008 (has links) (PDF)
La tomographie des temps de première arrivée cherche à estimer un modèle de vitesse de propagation des ondes sismiques à partir des temps de première arrivée pointés sur les sismogrammes. Le modèle de vitesse obtenu peut alors permettre une interprétation structurale du milieu ou bien servir de modèle initial pour d'autres traitements de l'imagerie sismique. Les domaines d'application de cette méthode s'étendent, à des échelles différentes, de la géotechnique à la sismologie en passant par la géophysique pétrolière. Le savoir-faire du géophysicien joue un rôle important dans la difficile résolution du problème tomographique non-linéaire et mal posé. De nombreuses recherches ont entrepris de faciliter et d'améliorer cette résolution par des approches mathématique ou physique. Dans le cadre de ce travail, nous souhaitons développer une approche pragmatique, c'est-à-dire que nous considérons que le problème tomographique doit être résolu par un algorithme interactif dont les paramètres de réglage sont clairement définis. L'aspect interactif de l'algorithme facilite l'acquisition du savoir-faire tomographique car il permet de réaliser, dans un temps raisonnable, de nombreuses simulations pour des paramétrisations différentes. Le but poursuivi dans cette thèse est de définir, pour le cas spécifique de la tomographie des temps de première arrivée, un algorithme qui réponde au mieux à ces critères. Les algorithmes de tomographie des temps de première arrivée classiquement mis en oeuvre aujourd'hui ne répondent pas à nos critères d'une approche pragmatique. En effet, leur implémentation ne permet pas d'exploiter l'architecture parallèle des supercalculateurs actuels pour réduire les temps de calcul. De plus, leur mise en oeuvre nécessite une paramétrisation rendue complexe du fait de la résolution du système linéaire tomographique. Toutes ces limitations pratiques sont liées à la formulation même de l'algorithme à partir de la méthode de Gauss- Newton. Cette thèse repose sur l'idée de formuler la résolution du problème tomographique à partir de la méthode de plus grande descente pour s'affranchir de ces limitations. L'étape clé de cette formulation réside dans le calcul du gradient de la fonction coût par rapport aux paramètres du modèle. Nous utilisons la méthode de l'état adjoint et une méthode définie à partir d'un tracé de rais a posteriori pour calculer ce gradient. Ces deux méthodes se distinguent par leur formulation, respectivement non-linéaire et linéarisée, et par leur mise en oeuvre pratique. Nous définissons ensuite clairement la paramétrisation du nouvel algorithme de tomographie et validons sur un supercalculateur ses propriétés pratiques : une parallélisation directe et efficace, une occupation mémoire indépendante du nombre de données observées et une mise en œuvre simple. Finalement, nous présentons des résultats de tomographie pour des acquisitions de type sismique réfraction, 2-D et 3-D, synthétiques et réelles, marines et terrestres, qui valident le bon comportement de l'algorithme, en termes de résultats obtenus et de stabilité. La réalisation d'un grand nombre de simulations a été rendue possible par la rapidité d'exécution de l'algorithme, de l'ordre de quelques minutes en 2-D.
3

Lois de conservation pour la modélisation des mouvements de foule / Crowd motion modeling by conservation laws

Mimault, Matthias 14 December 2015 (has links)
Dans cette thèse, on considère plusieurs problèmes issus de la modélisation macroscopique des mouvements de foule. Le premier modèle consiste en une loi de conservation avec un flux discontinu, le second est un système mixte hyperbolique-elliptique et le dernier est une équation non-locale. D'abord, on utilise le modèle de Hughes une dimension pour décrire l'évacuation d'un couloir avec deux sorties. Ce modèle couple une loi de conservation avec un flux discontinu à une équation eikonale. On implémente la méthode de suivi de fronts, qui traite explicitement le comportement de la solution non-classique au point de rebroussement, afin d'obtenir des solutions de référence. Elles serviront à tester numériquement la convergence de schémas aux volumes finis classiques. Ensuite, on modélise le croisement de deux groupes marchant dans des directions opposées avec un système de lois de conservation mixte hyperbolique-elliptique dont le flux dépend des deux densités. Le système perd son hyperbolicité pour certainement valeurs de densité. On assiste à l'apparition d'oscillations persistantes mais bornées, ce qui conduit à la reformulation du problème associé dans le cadre des mesures de probabilités. Finalement, on étudie un modèle non-local de trafic piétonnier en deux dimensions. Le modèle consiste en une loi de conservation dont le flux dépend d'une convolution de la densité. Avec ce modèle, on résout un problème d'optimisation pour une évacuation d'une salle avec une méthode de descente, évaluant l'impact du calcul explicite du gradient de la fonction coût avec la méthode de l'état adjoint plutôt que son approximation par différences finies. / In this thesis, we consider nonclassical problems brought out by the macroscopic modeling of pedestrian flow. The first model consists of a conservation law with a discontinuous flux, the second is a mixed hyperbolic-elliptic system of conservation laws and the last one is a nonlocal equation. In the first chapter, we use the Hughes model in one space-dimension to represent the evacuation of a corridor with two exits. The model couples a conservation law with discontinuous flux to an eikonal equation. We implement the wave front tracking scheme, treating explicitly the solution nonclassical behavior at the turning point, to provide a reference solution, which is used to numerically test the convergence of classical finite volume schemes. In the second chapter, we model the crossing of two groups of pedestrians walking in opposite directions with a system of conservation laws whose flux depends on the two densities. This system loses its hyperbolicity for certain density values. We assist to the rising of persistent but bounded oscillations, that lead us to the recast of the problem in the framework of measure-valued solutions. Finally we study a nonlocal model of pedestrian flow in two space-dimensions. The model consists of a conservation law whose flux depends on a convolution of the density. With this model, we solve an optimization problem for a room evacuation with a descent method, evaluating the impact of the explicit computation of the cost function gradient with the adjoint state method rather than approximating it with finite differences.

Page generated in 0.0692 seconds