Spelling suggestions: "subject:"deméthodes quantique"" "subject:"etméthodes quantique""
1 |
Dynamique quantique de transferts d'électron dans des systèmes environnés à fort couplage / Quantum dynamics of electron tranfer in strongly coupled environmentsMangaud, Etienne 12 July 2016 (has links)
Les transferts d'électron sont au cœur de nombreux processus d'intérêts chimiques, biologiques ou photochimiques comme, par exemple, dans la technologie du photovoltaïque ou la photosynthèse où ils ne sont que rarement isolés. Par ailleurs, des résultats expérimentaux tendent à montrer que les phénomènes quantiques, notamment les superpositions d'états ou cohérences, peuvent se maintenir sur l'échelle de temps du transfert d'électron même en présence d'un environnement. Dans ce travail, le transfert d'électron est étudié dans trois types de systèmes moléculaires. Le premier est un transfert intermoléculaire dans une hétérojonction oligothiophène-fullerène modélisant une interface de séparation de charge pour de futures cellules photovoltaïques organiques. Le second est un transfert intramoléculaire dans des composés organiques à valence mixte où l'on étudie l'effet d'un pont avec une chaîne croissante de n-paraphénylènes dans des polymères aromatiques avec des sites donneur-accepteur (1,4-diméthoxy-3-méthylphénylènes). Le troisième est le transfert intermoléculaire dans une chaîne de tryptophanes dans une chromoprotéine cryptochrome. Dans tous ces cas, une attention particulière est portée à une modélisation réaliste. Dans ce contexte, il est crucial de faire une partition judicieuse entre l'ensemble des degrés de liberté et de décrire proprement l'interaction entre ceux impliqués dans le transfert et ceux qualifiés d'environnement. A cette fin, un hamiltonien décrivant un système électronique donneur-accepteur couplé à un bain d'oscillateurs harmoniques a été paramétré en utilisant notamment la méthode de la DFT contrainte (cDFT). Le bain d'oscillateurs a été décrit par une analyse en modes normaux ou via la fluctuation de l'écart énergétique obtenue par des calculs de type QM/MM. Les systèmes étudiés présentent tous des environnements fortement couplés et structurés nécessitant d'explorer des stratégies peu conventionnelles. Dans un modèle d'environnement formé d'un nombre fini d'oscillateurs traités explicitement, le traitement dynamique nécessite d'utiliser des méthodes multidimensionnelles telles que la méthode multi-couches multiconfigurationnelle de produits de Hartree dépendant du temps (ML-MCTDH). Dans l'approche de dynamique dissipative où le bain intervient seulement par ses propriétés statistiques il est alors nécessaire de se tourner vers une méthode non perturbative telle que les matrices hiérarchiques. A côté de ces approches exactes, une autre stratégie consiste à effectuer une transformation de coordonnées afin de définir une coordonnée collective incluse avec le système électronique qui est elle-même couplée à un bain secondaire. La propagation dynamique peut alors être effectuée par une équation-maîtresse approchée s'appuyant sur la théorie de perturbation. Comme principaux résultats, nous analysons en détail le domaine de validité des différentes méthodes utilisées puis expliquons le comportement dynamique des différents cas amenant à une délocalisation facile ou à un piégeage de la charge. Par là même, nous montrons que la méthodologie proposée, appliquée à des systèmes-modèles dans ce travail, est bien adaptée pour l'analyse de l'influence mutuelle entre le transfert de charge et les déformations nucléaires, une situation prototypique pour de nombreux processus importants dans les systèmes chimiques et biologiques. / Electron transfer reactions are at stake in several chemical, biological or photochemical processes of great interest as, for instance, photovoltaic technology or photosynthesis where they are rarely isolated. Furthermore, experimental results show that quantum phenomena, notably superpositions of states or coherences, can persist on the time scale of the electron transfer even in the presence of an environment. In this work, electron transfer is studied in three types of molecular systems. The first one is an intermolecular transfer in an oligothiophene-fullerene heterojonction modelling a charge separation interface for future organic photovoltaic devices. The second one is an intramolecular transfer in mixed-valence organic compounds where the bridge effect of an increasing n-paraphenylens chain is studied on aromatic polymers with donor-acceptor sites (1-4,dimethoxy-3-methylphenylens). The third one is an intermolecular transfer in a tryptophan chain of a cryptochrome chromoprotein. In all these cases, a special attention is given to realistic modelling. In this context, it is crucial to define carefully the partition between the degrees of freedom, in particular amongst those implied in the transfer and those qualified to be part of an environment. To this end, a Hamiltonian describing a donor-acceptor electronic system coupled to a bath of harmonic oscillators is parameterized using the constrained DFT method (cDFT). The oscillators' bath is described by a normal mode analysis or via the electronic gap fluctuation obtained by QM/MM calculations. The systems under study turn out to be strongly coupled, and structured which requires to explore non-conventional strategies. In a model environment constituted of a finite number of oscillators treated explicitly, the dynamics is performed by multidimensional quantum propagation methods such as the multi-layer multiconfigurational time-dependent Hartree method (ML-MCTDH). In the dissipative approach, where the bath acts only by its statistical properties, it is mandatory to turn to non-perturbative methods such as the hierarchical equations of motion approach. Apart from these exact approaches, an alternative strategy consists in carrying out a change of coordinates in order to define a collective bath mode included in the electronic system, which itself is coupled to a secondary bath. The dynamical propagation can then be done by an approximated quantum master equation using perturbation theory. As main results, we show in detail the domain of validity of the different methods presented and explain the dynamical behaviour of the different cases leading to an easy delocalization or a trapping of the charge. Hence, we show that the methodology applied in model systems are well suited for the analysis of the mutual interplay between the charge transfer and nuclear deformations, a prototypical situation in many important chemical and biological processes.
|
2 |
Vers un nouvel outil d'étude de la reconnaissance hôte-ligand : conception de nouveaux inhibiteurs de PDE4 guidée par docking quantique, synthèse et évaluation biologique / Toward a new tool of host-ligand recognition : design of new PDE4 inhibitors guided by quantum docking, synthesis and biological evaluationBarberot, Chantal 06 December 2013 (has links)
Dans la recherche de nouveaux traitements des maladies broncho-pulmonaires comme l'asthme et la broncho-pneumopathie chronique obstructive, les inhibiteurs de PDE4 sont des cibles intéressantes. Dans cette voie, notre laboratoire s'intéresse à la synthèse d'une nouvelle famille d'inhibiteurs à base pyridazinone. Pour cela, cette thèse couple la modélisation moléculaire (docking : développement méthodologique et application), la synthèse organique ainsi que des tests biologiques.Dans un premier temps, le développement du logiciel d'amarrage moléculaire AlgoGen a été poursuivi. AlgoGen (créé initialement à l'université de Lorraine en 2009) est un logiciel qui couple un algorithme génétique pour la recherche conformationnelle à une évaluation de l'énergie protéine-ligand à un niveau quantique semi-empirique alors que les autres logiciels existant effectuent ce calcul à un niveau classique en général. Le calcul d'une énergie à un niveau quantique est très coûteux en temps. C'est pourquoi, nous avons apporté de nombreuses modifications à ce logiciel afin d'accroître son efficacité dans la recherche conformationnelle. Ce logiciel a ensuite été utilisé sur un jeu de 22 dimères (typiques des reconnaissances moléculaires biologiques) et à huit systèmes protéine-ligand.Dans un deuxième temps, huit inhibiteurs ont été synthétisés et testés in vitro sur la cible PDE4. Pour compléter ce volet expérimental, une étude de structure-activité a été effectuée grâce au docking moléculaire (AlgoGen, Autodock, Glide) pour rationaliser les activités mesurées (IC50). Pour terminer, des pharmaco-modulations guidées par docking ont été réalisées afin de proposer de nouveaux inhibiteurs de plus grandes affinités avec la protéine PDE4D. / For the research of new treatment of bronchopulmonary diseases such as asthma and chronic obstructive pulmonary disease (COPD), the PDE4 inhibitors are an attractive target. Our laboratory is interested in a new PDE4 inhibitors family based on the pyridazinone pattern. For this purpose, this thesis couples molecular modeling (docking: methodological development and application), organic synthesis and biological tests.First, the development of the molecular docking software AlgoGen was continued. AlgoGen (initially created at university of Lorraine in 2009) is a program which couples a genetic algorithm for the conformational research and a protein-ligand energy evaluation at the quantum semi-empirical level while other software do this evaluation at a classical level. Quantum energy calculations are very time consuming. That is the reason why some modifications have been made to improve its efficiency for the conformational search. This software was then used for calculations on a set of 22 dimers (typical in biological molecular recognition) as well on 8 ligand-protein complexes.Secondly, eight inhibitors were synthesized and tested in vitro on the PDE4 target. To complete the experimental part, a structure-activity relationship study was carried out through a molecular docking to rationalize the measured activity (IC50). Finally, pharmaco-modulations guided by docking were made to propose new inhibitors with more affinity with the protein.
|
3 |
Development and application of methods based on extremely localized molecular orbitals / Développement et application de méthodes basées sur les orbitales moléculaires extrêmement localiséesMeyer, Benjamin 10 October 2016 (has links)
Les recherches menées dans le cadre de cette thèse avaient un double objectif. Premièrement, le développement d’une nouvelle méthode de chimie quantique à croissance linéaire basée sur le concept d’Orbitales Moléculaires Extrêmement Localisées (ELMOs) et adaptée à l’étude de très gros systèmes moléculaires. Deuxièmement, il s’agit d’évaluer le potentiel des méthodes de calcul utilisant de fonctions d’ondes contraintes et leur capacité à reproduire des données de diffraction aux rayons-X. En ce qui concerne le premier objectif, notre approche se base sur le principe de transférabilité, à savoir l’observation que les systèmes moléculaires sont composés par des unités fonctionnelles récurrentes qui conservent leurs caractéristiques lorsqu’elles se trouvent dans un même environnement chimique. Malheureusement, les orbitales moléculaires traditionnellement employées en chimie théorique dans des modèles de particule indépendante (Hartree-Fock, Kohn-Sham) sont complètement délocalisées sur le système étudié et, par conséquent, ne peuvent pas être transférées d’une molécule à une autre. Ce problème peut être résolu en ayant recours à des orbitales moléculaires déterminées de manière variationnelle sous la contrainte d’être exprimées à partir des fonctions de base centrées sur des atomes de fragments présélectionnés : les ELMOs. En fait, puisqu’elles sont strictement localisées, ces orbitales sont en principe transférables d’une molécule à une autre. L’objectif à terme est d’exploiter cette transférabilité en construisant une base de données d’ELMOs permettant de calculer quasiment instantanément, de manière approximative, des fonctions d’ondes et des densités électroniques de macromolécules. Dans la première partie de cette thèse, nous avons évalué le degré de transférabilité des orbitales moléculaires extrêmement localisées et nous avons proposé une approximation appropriée pour les molécules modèles servant à la détermination des ELMOs qui seront stockées dans la future base de données. Nous avons également comparé la transférabilité des ELMOs avec celle de densités électroniques atomiques asphériques (pseudo-atomes) qui sont largement répandues en cristallographie pour le raffinement de structure cristallographique de grands systèmes. La seconde partie de la thèse se focalise sur les méthodes quantiques utilisant des fonctions d’ondes contraintes. Dans ces méthodes, on cherche à déterminer des fonctions d’ondes qui minimisent l’énergie électronique des systèmes étudiés, mais qui en même temps doivent reproduire un jeu d’amplitudes de facteurs de structure expérimentaux. Cette technique, initialement proposée par Jayatilaka, a récemment été étendue à la théorie des orbitales moléculaires extrêmement localisées. Dans ce contexte, nous avons tout d’abord étudié les effets d’une localisation stricte sur la structure électronique dans des calculs de la fonction d’onde contrainte. Puis, nous avons déterminé si la fonction d’onde contrainte (et la densité associée) est capable de capturer des effets de la corrélation électronique. Enfin, en utilisant une nouvelle technique dite Valence Bond "expérimentale", basée sur les ELMOs, nous avons effectué une étude théorique sur le syn-1,6:8,13- Biscarbonyl[14] annulène (BCA) pour expliquer la rupture partielle de son aromaticité à haute pression observée expérimentalement. Cette dernière étude illustre positivement la potentialité du concept d’orbitale moléculaire strictement localisée en chimie quantique, qui ouvre des perspectives très larges notamment pour l’étude statique ou dynamique de systèmes moléculaires complexes. / The goal of the present work was dual. At first, this thesis aimed at proposing new lin- ear scaling quantum chemistry methods based on Extremely Localized Molecular Orbitals (ELMOs) and, secondly, it focused on the assessment of the capabilities of the X-ray con- strained wave function approaches. Concerning the first target, our approach is based on the transferability principle, namely the observation that molecular systems are composed by recurrent functional units that generally keep their features when they are in a similar chemical environment. In this context, it is possible to take advantage of the intrinsic trans- ferability of molecular orbitals strictly localized on small molecular subunits to recover wave functions and electron densities of large systems. Unfortunately, the molecular or- bitals traditionally used in quantum chemistry are completely delocalized on the system in exam and, therefore, are not transferable from a molecule to another. This problem can be solved only considering molecular orbitals variationally determined under the constraint of expanding them on local basis sets associated with pre-determined molecular fragments: the ELMOs. In fact, since they are strictly localized, these orbitals are in principle transfer- able from molecule to molecule and our final goal is to construct databanks of ELMOs that will enable to recover almost instantaneously approximate wave functions and electron densities of macromolecules at a very low computational cost. In the first part of this the- sis, we have evaluated the transferability of the Extremely Localized Molecular Orbitals and we have defined a suitable model molecule approximation for the computation of the ELMOs to be stored in the future databases. We have also compared the transferability of the ELMOs to the one of the aspherical atomic electron densities (pseudoatoms), which are largely used in crystallography to refine crystallographic structures of large systems. The second part of this work focuses on the X-ray constrained wave function approach. This method consists in determining wave functions that not only minimize the electronic energy of the systems under exam, but that also reproduce sets of experimental structure factor amplitudes within a desired accuracy. The technique, initially proposed by Jayatilaka has been recently extended to the theory of the Extremely Localized Molecular Orbitals. In this context, we have first studied the effects of introducing a strict a priori localization on the electronic structure in X-ray constrained wave function calculations. Then, we have determined if the X-ray constrained wave function is intrinsically able to capture the elec- tron correlation effects on the electron densities. Finally, also exploiting a novel X-ray con- strained ELMO-based Valence Bond technique, we have reported theoretical studies on the syn-1,6:8,13-Biscarbonyl[14] annulene (BCA) to explain the partial rupture of the aromatic character of the molecule occurring at high-pressure
|
4 |
Dynamiques moléculaires utilisant un champ de force quantique semiempirique : développement et applications à des systèmes d'intérêt biologique / Molecular dynamics using a semiempirical quantum force field : development and applications to systems of biological interestMarion, Antoine 08 December 2014 (has links)
Ce travail est destiné au développement de méthodes approchées de chimie quantique capables de traiter des systèmes biologiques de grande taille. En particulier, nous réalisons des simulations de dynamique moléculaire dans l'approximation de Born-Oppenheimer, permettant une description quantique de l'Hamiltonien électronique du système dans son entier : SEBOMD (SemiEmpirical Born-Oppenheimer Molecular Dynamics). Notre approche se base sur un Hamiltonien électronique semiempirique (SE). L'une des principales difficultés rencontrées lors d'une simulation SEBOMD de la phase condensée est représentée par le choix de la méthode SE. La plupart des méthodes courantes ne permettant pas une bonne description de certaines interactions fondamentales, nous avons développé une nouvelle approche. Cette méthode, dénommée PM3-PIF3, a été appliquée à l'étude par dynamique moléculaire de molécules organiques dans l'eau. Les résultats obtenus montrent que notre méthode est appropriée pour le traitement de molécules comportant des groupements hydrophobes et/ou hydrophiles en milieu aqueux. L'analyse des propriétés électroniques et vibrationnelles de ces molécules en présence du solvant valide également nos résultats vis-À-Vis d'autres études expérimentales et théoriques présentes dans la littérature. Finalement, nous nous sommes intéressés au processus d'autoprotolyse de l'eau en milieux confinés. Après avoir discuté du choix de l'Hamiltonien SE à utiliser pour cette étude, nous avons caractérisé le transfert de proton dans un agrégat d'eau. Nous avons établi une corrélation entre l'énergie libre associée à la première étape de ce transfert et certaines propriétés physiques collectives / The present work is devoted to the development of approximate quantum chemistry methods that are suitable to treat biological systems of large size. In particular, we run molecular dynamics under the Born-Oppenheimer approximation, allowing a quantum mechanical description of the electronic Hamiltonian of the full system: SEBOMD (SemiEmpirical Born-Oppenheimer Molecular Dynamics). Our method is based on a semiempirical (SE) electronic Hamiltonian. One of the key issues arising in a condensed phase SEBOMD simulation is represented by the choice of the SE method. Since most of the currently available approaches fail in describing some relevant intermolecular interactions, we developed a new correction of SE Hamiltonians. This method, which we named PM3-PIF3, was applied to study the molecular dynamics of organic molecules in water. The results that we obtained showed that our technique is suitable to treat molecules having hydrophobic and/or hydrophilic groups in an aqueous medium. The analysis of the electronic and vibrational properties of these molecules in the presence of the solvent validates our results with respect to experimental and theoretical studies in the literature. Finally, we investigated the water self-Dissociation process in confined environments. After discussing the choice of the SE Hamiltonian to be used for this purpose, we characterized the proton transfer in a water cluster. We established a correlation between the free energy of the first step of this process and some collective physical properties
|
Page generated in 0.0642 seconds