291 |
Étude des Matériaux carbonés utilisés comme réducteurs pour la production des alliages de manganèse dans le four électrique / Study of carbonaceous materials used as reductants in the production of manganese alloys in the submerged electric arc furnaceGoncalves e Oliveira, Fernando Lucas 29 April 2010 (has links)
Notre travail est consacré à l’étude des matériaux carbonés utilisés comme réducteurs pour la production des alliages de manganèse dans le four électrique à arc immergé. Le choix du réducteur est important pour l’optimisation du procédé métallurgique et sa réactivité au CO2 est le paramètre le plus important utilisé par les producteurs de ferroalliages pour évaluer sa qualité. Les objectifs de notre travail sont : ? d’établir les critères de sélection du coke métallurgique ou réducteur de remplacement, utilisés pour la production des alliages de manganèse dans le four électrique, en utilisant la réactivité au CO2 comme le principal paramètre pour évaluer sa qualité ; ? d’un point de vue plus fondamental, apporter une meilleure compréhension des réactions du carbone dans le réacteur industriel. Dans l’optique d’une modélisation globale du four électrique, notre travail fournit des paramètres cinétiques d’une des réactions les plus importantes du procédé : la réaction de Boudouard. L’étude de la réductibilité des oxydes de manganèse pourrait donc être une nouvelle étape vers la construction d’un modèle global du réacteur industriel. Un troisième volet d’expériences utile à la modélisation serait l’étude de l’influence de la nature et du calibre du réducteur sur la résistivité électrique de la charge. / The main aims of our work have been to establish criteria useful for reductant selection, using coke reactivity to CO2 as the main parameter for reductant quality assessment and, from a fundamental point of view, to develop a better understanding of carbon reactions inside the industrial reactor. Therefore, Boudouard reaction has been studied on three increasing scales: intrinsic chemical reaction, coke lump, and coke bed scales. Several different types of carbonaceous materials have been studied. They represent the variety of reductants commonly used in the production of manganese ferroalloys in the electric furnace. It has been shown that this extended range of reductants introduces large differences between their characteristics, mainly between their reactivity to CO2. Regarding the coke lump gasification kinetics, the Langmuir-Hinshelwood model has been used to represent the intrinsic rate of the Boudouard reaction. A good correlation has been found between the initial gasification rates of the coke beds and the single coke lumps. The difference between these rates increases with increasing reductant reactivity. It is possible to determine coke gasification regime inside the industrial electric arc furnace using single particle and coke bed gasification models. The overall rate at which coke reacts with CO2 inside the industrial reactor is probably limited by the intrinsic chemical reaction. Therefore, a reactivity index, based on the initial gasification rate of the reductant, measured in the chemical-kinetics controlled regime, seems to be adapted to the reductant quality assessment. An additional technique could be the microtextural analysis.
|
292 |
Petrographic and geochemical constraints on the origin and post-depositional history of the Hotazel iron-manganese deposits, Kalahari Manganese Field, South AfricaTsikos, Harilaos January 2000 (has links)
The giant Palaeoproterozoic manganese deposits of the Kalahari manganese field (KMF), Northern Cape Province, South Mrica, have been a world renowned resource of manganese ore for many decades. In recent years, the mineralogical composition, geochemistry and genesis of these deposits have been the objects of many geological investigations, yet their origin remains contentious up to the present day. A characteristic feature of the Kalahari deposits is the intimate association of manganese ore and iron-formation of the Superior-type, in the form of three discrete sedimentary cycles constituting the Hotazel Formation. This striking lithological association is an almost unique feature on a global scale. From that point of view, the present study is effectively the first attempt to shed light on the origin and post-depositional history of the Hotazel succession, using as prime focus the petrographic and geochemical characteristics ofthe host iron-formation. Petrographic and whole-rock geochemical information of iron-formation from the southern parts of the KMF, suggests that the Hotazel iron-formation is almost identical to other iron-formations of the world of similar age and petrological character. The rock exhibits essentially no high-grade metamorphic or low-temperature alteration effects. Mineralogically, it contains abundant chert, magnetite, subordinate amounts of silicate minerals (greenalite, minnesotaite, stilpnomelane) and appreciable concentrations of carbonate constituents in the form of coexisting calcite and ankerite. Such mineralogical composition is indicative of processes occurring in a diagenetic" to burial (up to very low-greenschist facies) metamorphic environment. Bulk-rock geochemical data point towards a simple composition with Si02, total Fe-oxide and CaO being the chief major oxide components. Whole-rock rare-earth element data suggest that the iron-formation precipitated from a water column with chemical signatures comparable to modern, shallow oceanic seawater. The virtual absence of positive Eu anomalies is a feature that compares well with similar data from Neoproterozoic, glaciogenic iron-formations of the Rapitan type, and suggests but only a dilute hydrothermal signal, poten!ially derived from distal submarine volcanic activity. Carbon and oxygen isotope data from iron-formation and Mn-bearing carbonates as well as overlying ferriferous limestone of the Mooidraai Formation, compare well with the literature. The former exhibit variable depletion relative to seawater in terms of both BC and 180, while the latter have signatures comparable to normal marine bicarbonate. Isotopic variations appear to be related to fluctuations in the amount of co-precipitated marine carbonate, in conjunction with processes of coupled organic matter oxidation - FelMn reduction in the diagenetic environment. Oxygen isotope data from quartz-magnetite-calcite triplets suggest that crystallisation took place under open-system conditions, with magnetite being the most susceptible phase in terms of fluid-rock isotopic exchange. Data also suggest that the calcite-magnetite pair may constitute a more reliable geothermometer than the quartz-magnetite one, mainly due to the interlinked diagenetic histories between calcite and magnetite. Iron-formation from the northern parts of the KMF can by categorised into three main classes, namely pristine, altered and oxidised. Pristine iron-formation is identical to the one seen in the southernmost parts of the field. Altered iron-formation corresponds to a carbonate-free derivative of intense oxidation and leaching processes at the expense ofpristine iron-formation, and contains almost exclusively binary quartz-hematite mixtures. The rock appears to have lost essentially its entire pre-existing carbonate-related components (i.e., Ca, Mg, Sr, most Mn and Ba) and displays residual enrichments in elements such as Cr, Th, V, Ni and Pb, which would have behaved as immobile constituents during low-temperature alteration. The low temperature origin of altered iron-formation is supported by oxygen isotope data from quartz-hematite pairs which indicate that isotopically light hematite would have derived from oxidation of magneftte and other ferroussilicate compounds in the presence of a low-temperature meteoric fluid, while quartz would have remained isotopically unchanged. Occasional occurrences of acmite-hematite assemblages suggest localised metasomatic processes related to the action ofNaCI-rich fluids at the expense of altered iron-formation. The conditions of acmite genesis are very poorly constrained due to the very broad stability limits of the mineral in environments ranging from magmatic to surface-related. Oxidised iron-formation constitutes a distinct rock-type and shares common attributes with both the pristine and the altered iron-formation. The rock contains hematite as an important constituent while the amount of magnetite is substantially reduced. With regard to carbonate nlinerals, calcite contents are clearly very low or absent, having being replaced in most instances by a single, Mgenriched, dolomite/ankerite:type species. Oxidised iron-formation contains somewhat higher amounts of iron and reduced amounts of Sr and Ba relative to pristine iron-formation, whereas enrichments in elements such as Ni, Th, Pb, Cr, and V are seen, similar to altered iron-formation. Oxidised iron-formation appears to have originated from processes of dissolution-mobilisationreprecipitation of solutes derived primarily from leaching that produced altered iron-formation. It is proposed that the Hotazel iron-formation and associated manganese deposits were formed as a result of episodic sea-level fluctuations in a stratified depositional environment that gradually evolved into a shallow carbonate platform. A critical parameter in the development of manganese sediment may include regional climatic patterns related to a glacial event (Makganyene diamictite) prior to deposition of the Hotazel strata. This suggestion draws parallels with processes that are believed to have led to the formation of worldwide iron-formations and associated manganese deposits subsequent to Neoproterozoic episodes of glaciation. Submarine volcanism related to the underlying Ongeluk lavas appears to have had very little (if any) metallogenic significance, while evidence for a sudden rise in the oxygen contents of the atmosphere and ambient waters is lacking. With regard to later alteration processes, combination of geological and geochemical data point towards the potential influence of surface weathering prior to deposition of rocks of the unconformably overlying Olifantshoek Supergroup, possibly coupled with fault- and/or thrustcontrolled fluid-flow and leaching of the Hotazel succession during post-Olifantshoek times.
|
293 |
Lithostratigraphic correlation, mineralogy and geochemistry of the lower manganese orebody at the Kalagadi Manganese Mine in the Northern Cape Province of South AfricaRasmeni, Sonwabile January 2012 (has links)
The Kalagadi Manganese mine in the Kuruman area of the Northern Cape Province of South Africa contains reserves of Mn ore in excess of 100Mt. Mineralization in the mine lease area is restricted within the Hotazel Formation of the Voȅlwater Subgroup, belonging to the Postmasburg Group, the upper subdivision of the Transvaal Supergroup. Surface topography is characterized by flat lying, undulation with minimal faulting and the ore are slightly metarmophosed. This study investigates the general geology of the mine, lithostratigraphic subdivision and correlation of the economic Lower Manganese Orebody (LMO) of the Kalagadi Manganese Mine in order to guide mining plan and operations once the mine is fully commissioned. At the commencement of this study, Kalagadi Manganese mine was a project under exploration with no specific geology of the mine lease area and no lithostratigraphic subdivision. The study also aimed determining the extent of lithostratigraphic correlation between the LMO economic orebodies of the Kalagadi Manganese mine with that of underground Gloria and open-pit Mamatwan mines. Four methods including petrographic microscope, Scanning electron Microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were applied mainly for the mineral identification, chemical composition and ore characterization of the Lower Manganese Orebody (LMO) at Kalagadi Manganese mine. The results of this study indicates the following: (1) Eleven textural distinct zones with economic zones restricted to the middle while the lower grade zones are confined to the top and bottom of the LMO; (2) The economic zones, comprising of Y, M, C and N subzones attain an average thickness of 10 m and are graded at an average of 40% Mn while the Mn/Fe ratio varies from 6 to 9; (3) The most economic zones are M and N subzones which are mostly characterized by oxidized ovoids and laminae, a characteristic applicable even to other zones of economic interest; (4) Braunite is the main mineral of the manganese ore and is often integrown with kutnahorite and other minerals (hematite, hausmannite, Mg-calcite, calcite, jacobsite, serpentine and garnet) which are present in variable amounts; (5) The Mg-rich calcite (Ca, Mg)CO3 is the second dominant manganese carbonate mineral and it corresponds to elevated MgO concentration and is often associated with marine environment. The occurrence of the Mgcalcite is not common in the manganese ore of this area except for the Mn-calcite, which was not determined by XRD analyses in this study; (6) MnO is the most abundant major oxide in the manganese ore while other major oxides present in decreasing order of abundance are CaO, SiO2, Fe2O3, and MgO. The oxides TiO2, Na2O, K2O, Al2O3, and Cr2O3 are depleted and are mostly 0.01wt% and 0.001wt% respectively while P2O5 concentrations are low ranging from 0.02wt% to 0.3wt%. The trace element concentrations of Ba, Zn and Sr in most borehole samples are slightly elevated ranging from 100ppm to 3.9% (36000pm) while Co, Cu, Ni, Y, As, Zr, V and La rarely exceed 50ppm. The enrichments of Cu, Zn, Ni, Co and V that are commonly associated with volcanogenic hydrothermal input in chemicals may reach up to 70ppm; (7) The mineralogical and geochemical characteristics of the manganese ore in the Kalagadi Manganese mine lease area are similar to that of Low-Grade Mamatwan-Type ore. The cyclicity (Banded Iron Formation ↔ Hematite lutite ↔ braunite lutite) and alternation of manganese and iron formation have been confirmed; and (8) The oxygen δ18O isotope values (18‰ to 22‰) indicate a slight influence of metamorphism of the manganese ore. No positive correlation exists between δ13C vs δ18O values and Mn vs δ13C values. Such observations indicate minimal action of organic carbon during manganese precipitation where the organic matter was oxidized and manganese content reduced. On the other hand, the manganese carbonates (CaO) are positively correlated with carbon isotope, this indicates diagenetic alteration and the involvement of biogenic carbonate during the formation of manganese carbonates. It is concluded that the lithostratigraphic subdivision at Kalagadi Manganese mine is best correlated physically, mineralogically and geochemically with that of Gloria mine operating in the Low Grade Mamatwan - Type ore while correlation with an open-pit Mamatwan mine is also valid.
|
294 |
Computer simulation studies of MnO2 and LiMn2O4 nanotubeTshwane, David Magolego January 2016 (has links)
Thesis (MSc. (Physics)) -- University of Limpopo, 2016 / Nanostructured materials are attractive candidates for efficient electrochemical energy storage devices because of their unique physicochemical properties. Introducing nanotube systems as electrode materials represents one of the most attractive strategies that could dramatically enhance the battery performance. Nanostructured manganese based oxides are considered as ideal electrode materials for energy storage devices such as high energy and high power lithium-ion batteries. In this study, computer simulation strategies were used to generate various structures of MnO2 and spinel LiMn2O4 nanotubes; where Miller index, diameter and symmetry are considered as variables. The effect of these variables on nanotube generation was investigated. MnO2 and spinel LiMn2O4 nanotubes were generated using MedeA® software. Lower Miller indices, namely; {001}, {100}, {110} and {111} with diameter ranging from 5Å30Å were investigated for both systems. There are two ways that a nanotube structures could be wrapped along different directions, i.e., a_around_b or b_around_a. It was observed that wrapping direction has an effect on the geometrical structure of the nanotube. MnO2 nanotube generated from {110} revealed that nanotube wrapped along b_around_a gave a close-packed structure compared to its counterpart nanotube wrapped a_around_b. Diameter represents an important structural parameter of nanotubes; however, precise control of nanotube diameter over a wide range of materials is yet to be demonstrated. In this study, it was found that as the diameter of the nanotube is changed, parameters such as cross-sectional area and bond length change as well. The average bond distance of the nanotubes is less than that of MnO2 and LiMn2O4 bulk structure. Molecular dynamics simulation is further used to investigate the structure of MnO2 and LiMn2O4 nanotubes and the effect of temperature on the generated systems. Molecular graphical images used for the atomic positions for the nanotubes were investigated. The nanotube structures are described using radial distribution functions and XRD patterns. The calculated XRD patterns are in good agreement with the experiments, thus validating the generated structural models for the nanotubes. The resulting models conform to pyrolusite polymorph of MnO2 and LiMn2O4, featuring octahedrally coordinated manganese atoms. It was established that the variables have a direct control on nanotube morphology and the stability of generated nanotube model depends on surface morphology and termination. / National Research Foundation (NRF) and
Centre for High Performance Computing (CHPC) of CSIR
|
295 |
Characterization of a New D-D Neutron Generator System for Neutron Activation of Manganese in Bone In-VivoElizabeth Helen Jaye (12463536) 27 April 2022 (has links)
<p>Neutron Activation Analysis (NAA) is a non-invasive method for assessing the qualitative and quantitative elemental composition of a sample. One application of this technique is in-vivo quantification of specific elements in the human body. An important element in terms of human exposure assessment is Manganese (Mn). Mn is the fourth most usedindustrial metal and can be an inhalation exposure hazard specifically for welders. Over exposure to Mn can lead to neurological degeneration issues similar to Parkinson’s disease. It has been found that bone is a good biomarker for Mnas Mn is deposited in the bone and remains for long periods of time,allowing for an assay to reveal long term exposure information. The method of using NAA to quantify levels of Mn in-vivo using the bones in the human hand is being explored in this work.The NAA system used, involves a deuterium-deuterium neutron generator and an N-type High Purity Germanium Detector. It is critical to have the performance of the entire system characterized using phantoms and cadaver bones before the system can be used for in-vivo measurements. The goal of this work is to determine the neutron yield of the generator system, the neutron and photon dose received by a sample, the detection limit of Mn with this system, and to evaluate the Mn detection capability of the systemusing cadaver bones from occupationally exposed Mn miners. The parameters were determined through a combination of simulation with Monte Carlo N-Particle Code (MCNP), experiments using Mn doped bone phantoms and cadaver bones, and various dosimetry tools such as TLDs and EPDs. The neutron yieldfor the D-D 109M generator wasestimated to be2.24E+09+/-2.15E+07neutrons per secondfor this work. The Mn detection limit for the system was estimatedto be 0.442 ppm. The equivalent dose received by the sampleduring the standard 10-minute irradiation was estimated to be 8.45 +/-2.05rem. The results found for the human cadaver bones weremixed. It was found that the system was able to successfully detect Mn incadaver bones. Unexpectedly, however, three of the samples showed little to no Ca signal.In addition, significant amounts of soft tissue and bone marrow exist in the samples.Thereforethe Mn concentration in the bones was not able to be accurately estimated. A relative metric of Mn concentration was used instead and showed a slight positive increase from the unexposed to exposed samples but was not statistically significant.</p>
|
296 |
ARGON-OXYGEN DECARBURIZATION OF HIGH MANGANESE STEELSRafiei, Aliyeh 18 February 2021 (has links)
Manganese is an essential alloying element in the 2nd and 3rd generation of Advanced High Strength steels (AHSS) containing 5 to 25% manganese. A combination of excellent strength and ductility makes these grades of steel attractive for the automotive industry. To produce these steels to meet metallurgical requirements the main concern for the steelmakers is to decrease the carbon concentration as low as 0.1% while suppressing the excessive manganese losses at high temperatures. Argon Oxygen Decarburization (AOD) is a promising candidate for the refining of high manganese steels.
This work has studied the kinetics of decarburization and manganese losses during the argon oxygen bubbling into a wide range of iron-manganese-carbon alloys. It was shown that decreasing the initial carbon content increased the manganese loss. In the competition between manganese and carbon for oxygen, alloys with lower initial manganese concentrations consumed a higher portion of oxygen for decarburization. This behavior was not expected by thermodynamics and the results did not support the concept of the critical carbon content either. It was demonstrated that for lower range carbon (≤0.42%) alloys, the total manganese loss can be explained by considering multiple mechanisms in parallel; oxide formation (MnO) and vapor formation (Mn (g)), and formation of Manganese mist by evaporation-condensation (Mn (l)). The evaporation-condensation mechanism was proposed with the assumption that the heat generated from MnO and CO formation increases the temperature at the surface of the bubble which facilitates the evaporation of manganese at a high vapor pressure. Consequently, manganese vapor condenses as fine droplets at the lower temperature inside the bubble.
Although dilution of oxygen with argon increased the efficiency of oxygen for decarburization as expected from the mechanism of the AOD process, manganese loss did not stop completely at higher argon concentrations in the gas mixture. Therefore, the bubble and melt do not fully equilibrate with respect to Mn and C.
For high carbon alloys (1%), there was excess oxygen after accounting for CO and MnO formation. According to mass balance and thermodynamic calculations, and assuming manganese loss by evaporation was negligible it was shown that oxygen was distributed amongst MnO, FeO, CO, and CO2.
It was demonstrated that increasing temperature resulted in the higher manganese loss as a mist and by simple evaporation due to the increased vapor pressure and less manganese loss by oxidation. Furthermore, it was found that the rate of decarburization increased with increasing temperature due to more partitioning of oxygen to carbon than manganese.
In addition, it was found that the variations of depth of lance submergence did not affect the rate of decarburization or manganese loss. This means that the reactions occur within such a short time that prolonged time after the reaction is completed does not lead to a repartitioning of the species. / Thesis / Doctor of Philosophy (PhD)
|
297 |
FABRICATION OF COMPOSITE ELECTRODES AND SUPERCAPACITOR DEVICESLiu, Yangshuai January 2016 (has links)
Electrochemical supercapacitors (ECs) attract significant attentions for their unique characteristics of high power density, good cycling capability and low cost. This dissertation will focus on fabrication of composite materials for electrodes and devices of ECs. A conceptually new colloidal approach to the fabrication of metal oxide – multiwalled carbon nanotube (MWCNT) composites is proposed. The heterocoagulation of positively charged oxide nanoparticles and negatively charged MWCNT allows the
fabrication of advanced nanocomposites with improved dispersion of individual components. The proof-of-principle was demonstrated by the fabrication of MnO2-MWCNT electrodes for ECs with excellent performance.
We proposed another novel concept based on electrostatic heterocoagulation of MnO2-MWCNT composites in aqueous environment. In this case, Benzyldimethylhexadecylammonium chloride (BAC) surfactant and caffeic acid (CA) were selected for adsorption and dispersion of MWCNT and MnO2, respectively, and this allowed the formation of stable aqueous suspensions of positively charged MWCNT and negatively charged MnO2. The asymmetric device showed high capacitance, high powerenergy
characteristics with enlarged voltage window of 1.8 V, good capacitance retention at high charge-discharge rates and cyclic stability. A novel capacitive material BiMn2O5 was firstly discovered and synthesized for ECs applications in our studies. The BiMn2O5 nanocrystals were prepared by a hydrothermal method. We demonstrated for the first time that BiMn2O5 – MWCNT composite can be used as a new active material for positive electrodes of ECs. The composite electrode
with high mass loading showed a capacitance of 6.0 F cm-2 (540 F cm-3) at a scan rate of 2 mV s-1 and excellent capacitive behavior at high scan rates. As-fabricated device showed good cyclic stability in a voltage window of 1.8 V with energy density of 13.0 Wh L-1 (9.0 Wh kg-1) and power density of 3.6 kW L-1 (2.5 kW kg-1).
We firstly discovered that Poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzenesulfonamido]-
1,2-ethanediyl, sodium salt] (PAZO) can be used as an universal dispersant for various materials and its thin film fabricated by electrophoretic deposition (EPD) exhibited photo-induced birefringence. Our new findings indicated that PAZO is good candidate for diverse materials dispersing because it contains diaromatic monomers with
salicylate ligands, which can provide multiple adsorption sites for efficient adsorption on particles and impart electrical charges to the particles. Additionally, the use of PAZO polymer offers the advantages of improved steric stabilization.
We discovered that Celestine blue (CB) can be developed as an efficient dispersing agent for the nanoparticles. We found that CB includes a catechol ligand, which can provide CB adsorption on inorganic nanoparticles. The relatively large size of the CB molecules is
beneficial for the electrosteric dispersion. The benefits of cathodic EPD for
nanotechnology were demonstrated by the formation of nanostructured MnO2 films on commercial high surface area current collectors for energy storage in ECs. / Thesis / Doctor of Philosophy (PhD)
|
298 |
[en] MANGANESE REMOVAL OF WATER AND WASTEWATER BY PRECIPITATION / [pt] REMOÇÃO DE MANGANÊS DE ÁGUAS E EFLUENTES POR PRECIPITAÇÃOJOAO PEDRO LAVINAS QUEIROZ 12 September 2014 (has links)
[pt] Metais quando presentes em concentrações elevadas podem causar danos não só a saúde do homem como também ao meio ambiente, o metal na condição de contaminante abordado neste estudo foi o manganês sendo este importante à vida, mas ao mesmo tempo considerado um contaminante. Sua presença em águas não se dá somente pela ação do homem, podendo este ser encontrado naturalmente em concentrações de até 10 mg/L, embora raramente essa concentração exceda 1 mg/L. Os agentes responsáveis por essa concentração natural de manganês são minerais provenientes do solo e subsolo contendo manganês em sua estrutura. O trabalho desenvolvido estudou a remoção de manganês (II) em sua forma precipitada utilizando-se da adição de determinadas substâncias: Oxigênio, Peróxido de Hidrogênio, Hipoclorito de Sódio, Hipoclorito de Sódio e Peróxido de Hidrogênio, SO2 e Oxigênio, SO2 e Peróxido de Hidrogênio, Carbonato de Sódio e por fim Ácido de Caro, para identificar dentre estes processos um com maior eficiência na remoção de águas e efluentes na sua forma precipitada. Os resultados foram obtidos a partir do tratamento de uma solução sintética com concentração inicial de 10 mg/L de manganês (II), cujo objetivo foi desenvolver caminhos para que este pudesse ser removido na sua forma precipitada e também para enquadramento deste efluente na legislação brasileira (CONAMA número 430/2011), que estabelece concentração máxima de 1,0 mg/L de manganês (II) em águas de Classes 1 e 2. Os ensaios foram realizados em pH 6, 7, 8, 9 e 10 e com utilização dos oxidantes em dosagens com excesso de 100 por cento e 300 por cento. Dentre os testes realizados, os testes com a utilização de Hipoclorito de Sódio, Hipoclorito de Sódio e Peróxido de Hidrogênio, SO2 e Ar, SO2 e Peróxido de Hidrogênio, Carbonato de Sódio e Ácido de Caro apresentaram eficiência na remoção de Manganês (II), atingindo-se concentrações finais de manganês inferiores à 0,01 mg/L em alguns casos. Verificou-se também grande dependência do pH para precipitação, essa ocorrendo em grande parte somente em valores de pH superiores a 7. / [en] Dissolved metals when present in elevated concentrations can cause damage not only to man s health but also to the environment. The metal in the condition of contaminant to be addressed in this study is the manganese which, although being important to life, is also considered a contaminant. Its presence in the water is not only a consequence of man s actions, it being able to be found naturally in concentrations of up to 10 mg/L, although this concentration rarely exceeds 1 mg/L. The agents responsible for this natural concentration of manganese are minerals from the soil and the underground containing manganese in its structure. The work developed studied the removal of manganese (II) in its precipitated form using the addition of determinated substances, such as: Oxygen, Hydrogen Peroxide, Sodium Hypochlorite, Sodium Hypochlorite and Hydrogen Peroxide, SO2 and Air, SO2 and Hydrogen Peroxide, Sodium Carbonate and finally Caro s Acid, to identify among these processes one with more efficiency in the removal of manganese from waters and effluents in its precipitated form. The results discussed were obtained from the treatment of a synthetic solution with initial concentration of 10 mg/L of manganese (II), whose objective was to develop paths so it could be removed in its precipitated form and also for the framework of the effluent in the Brazilian legislation (CONAMA number 430/2011), that establishes maximum concentration of 1 mg/L of manganese (II). The experiments were performed in pH 6, 7, 8, 9 and 10 and with utilization of the oxidants in stoichiometric dosages with excess of 100 per cent and 300 per cent. Among the tests performed, the tests with the use of Sodium Hypochlorite, Sodium Hypochlorite and Hydrogen Peroxide, SO2 e Air, SO2 and Hydrogen Peroxide, Sodium Carbonate and Caro s Acid presented efficiency in the removal of Manganese (II), reaching final concentrations of manganese inferior to 0,01 mg/L in some cases. Great dependency on the pH to precipitation was verified, this happening in great part only in elevated values of pH, these values being superior to 7. It can also be verified in some cases that the concentration of the chemical reagent utilized can have influence over the precipitation of Manganese.
|
299 |
HSTSS BATTERY DEVELOPMENT FOR MISSILE & BALLISTIC TELEMETRY APPLICATIONSBurke, Lawrence W., Bukowski, Edward, Newnham, Colin, Scholey, Neil, Hoge, William, Ye, Zhiyaun 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The rapid growth in portable and wireless communication products has brought valuable advancements in battery technology. No longer is a battery restricted to a metal container in cylindrical or prismatic format. Today’s batteries (both primary and secondary) can be constructed in thin sheets and sealed in foil/plastic laminate packages. Along with improvements in energy density, temperature performance, and environmentally friendly materials, these batteries offer greater packaging options at a significantly lower development cost. Under the Hardened Subminiature Telemetry and Sensor System (HSTSS) program these battery technologies have been further developed for high-g telemetry applications. Both rechargeable solid state lithium-ion polymer and primary lithium manganese dioxide batteries are being developed in conjunction with Ultralife Batteries Inc. Prototypes of both chemistries have been successfully tested in a ballistic environment while providing high constant rates of discharge, which is essential to these types of applications. Electrical performance and environmental data are reported.
|
300 |
Instrumentation development for studies of magnetic and structural properties of molecular magnetsTancharakorn, Somchai January 2008 (has links)
Tetramethyl ammonium manganese trichloride ([CH3)4N][Mn(II)Cl3]) known as TMMC, has been one of the most interesting systems in experimental magnetism due to its highly one-dimensional magnetic Heisenberg behaviour. The focus of this research programme was to study its magnetic and structural properties as a function of pressure. TMMC crystals were prepared by slow evaporation technique at room temperature; however it quickly became apparent that the material is only weakly magnetic and requires a pressure cell with a very low background. This discovery lead to the programme of instrumentation development for studies of weakly magnetic materials and gave a dualistic nature to the project. The first pressure cell developed was a piston-cylinder type cell for magnetic susceptibility measurements in a Magnetic Properties Measurement System (MPMS®) based on Superconducting Quantum Interference Device (SQUID) technology from Quantum Design, USA. It has been carefully designed in order to reduce the magnetic background. One way in which this has been achieved was through making the pressure cell symmetric with respect to the sample in order to provide an integrable response in the SQUID magnetometer. The cell was made of beryllium copper alloy which has a low background even at low temperature. The use of a multi-layered cylinder with the interference fit method has resulted in the increased strength of the cell and allowed larger sample volume. The use of Lamé equation and finite element method to calculate the change of the cell diameter or cell length as a function of internal pressure enables us to eradicate the need of superconductive manometer. The cell has been successfully tested up to a maximum pressure of 10 kbar. Further development of the cell has resulted in development of an electrical plug for in situ pressure measurement inside the pressure cell. This has been achieved by means of a manganin pressure sensor calibrated to provide pressure reading at any given temperature. For structural studies, a diamond anvil cell (DAC) was designed to conduct singlecrystal X-ray diffraction measurements at low temperature. The design was based on the well-known Merrill-Bassett DAC and on the design of the miniature DAC which has been developed for use within He-3 system in the Physical Properties Measurement System (PPMS®), Quantum Design. The cell has been tested down to liquid nitrogen temperatures with a cryostream cooling system and has shown a significant improvement compared to the standard pressure cells. The frost formation on the surface of the cell has slowed down significantly compared to the tests on the Merrill-Bassett cell, which led to a better quality diffraction pattern from the sample inside the cell. This result has been achieved due to the high thermal conductivity of the materials used in the construction and the minimisation of the DAC, which was effectively built around the Boehler-Almax diamond anvils. With the help of some of the high-pressure instruments mentioned above, highpressure properties of TMMC have been studied in this project. The structuremagnetism relationship was established from the results of magnetic and structural measurements under pressure. The magnetic susceptibility data helped to establish the change of the intrachain antiferromagnetic coupling constant as a function of pressure, while X-ray structures of TMMC were refined from ambient pressure to 17 kbar using a synchrotron X-ray diffraction technique. The structure of TMMC at room temperature was confirmed to be hexagonal. However, indirect evidence of the hexagonal-monoclinic structural phase transition was observed at above 17 kbar and room temperature. The combination of the magnetic and structural data has helped to establish that the interaction between high spin d5 metal orbitals (Mn(II)) in facesharing octahedral has a contribution from both direct exchange and superexchange interactions. The power-law relationship developed by Bloch was also observed in this system.
|
Page generated in 0.0505 seconds