• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 29
  • 29
  • 17
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 201
  • 201
  • 54
  • 53
  • 42
  • 41
  • 30
  • 29
  • 29
  • 21
  • 20
  • 20
  • 20
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Identification and characterization of the novel mKSR1 phosphorylation site Tyr728 and its role in MAPK signaling / Identifizierung und Charakterisierung der neuartigen mKSR1-Phosphorylierungsstelle Tyr728 und deren Rolle in der MAPK-Signalkaskade

Sibilski, Claudia January 2014 (has links) (PDF)
In mammals, KSR1 functions as an essential scaffold that coordinates the assembly of RAF/MEK/ERK complexes and regulates intracellular signal transduction upon extracellular stimulation. Aberrant activation of the equivalent MAPK signaling pathway has been implicated in multiple human cancers and some developmental disorders. The mechanism of KSR1 regulation is highly complex and involves several phosphorylation/dephosphorylation steps. In the present study, a number of novel in vivo phosphorylation sites were detected in mKSR1 by use of mass spectrometry analysis. Among others, Tyr728 was identified as a unique regulatory residue phosphorylated by LCK, a Src kinase family member. To understand how phosphorylation of Tyr728 may regulate the function of KSR1 in signal transduction and cellular processes, structural modeling and biochemical studies were integrated in this work. Computational modeling of the mKSR1(KD) protein structure revealed strong hydrogen bonding between phospho-Tyr728 and the residues surrounding Arg649. Remarkably, this pattern was altered when Tyr728 was non-phosphorylated or substituted. As confirmed by biochemical analysis, Arg649 may serve as a major anchor point for phospho-Tyr728 in order to stabilize internal structures of KSR1. In line with the protein modeling results, mutational studies revealed that substitution of Tyr728 by phenylalanine leads to a less compact interaction between KSR1 and MEK, a facilitated KSR1/B-RAF binding and an increased phosphorylation of MEK in complex with KSR1. From these findings it can be concluded that phospho-Tyr728 is involved in tightening the KSR1/MEK interaction interface and in regulating the phosphorylation of KSR1-bound MEK by either RAF or KSR1 kinases. Beside the Tyr728, Ser722 was identified as a novel regulatory phosphorylation site. Amino acid exchanges at the relevant position demonstrated that Ser722 regulates KSR1-bound MEK phosphorylation without affecting KSR1/MEK binding per se. Due to its localization, Ser722 might consequently control the catalytic activity of KSR1 by interfering with the access of substrate (possibly MEK) to the active site of KSR1 kinase. Together with Ser722, phosphorylated Tyr728 may further positively affect the kinase activity of KSR1 as a consequence of its vicinity to the activation and catalytic loop in the KSR1(KD). As revealed by structural modeling, phospho-Tyr728 builds a hydrogen bond with the highly conserved Lys685. Consequently, phospho-Tyr728 has a stabilizing effect on internal structures involved in the catalytic reaction and possibly enhances the phosphate transfer within the catalytic cleft in KSR1. Considering these facts, it seems very likely that the LCK-dependent phosphorylation of Tyr728 plays a crucial role in the regulation of KSR1 catalytic activity. Results of fractionation and morphology analyses revealed that KSR1 recruits LCK to cytoskeleton for its phosphorylation at Tyr728 suggesting that this residue may regulate cytoskeleton dynamics and, consequently, cell motility. Beside that, phosphorylation of Tyr728 is involved in the regulation of cell proliferation, as shown by a significantly reduced population doubling time of KSR1-Y728F cells compared to cells expressing wild type KSR1. Taken together, tyrosine phosphorylation in KSR1 uncovers a new link between Src family kinases and MAPK signaling. Tyr728, the novel regulatory phosphorylation site in murine KSR1, may coordinate the transition between the scaffolding and the catalytic function of KSR1 serving as a control point used to fine-tune cellular responses. / KSR1 fungiert bei Säugetieren als zentrales Gerüstprotein, welches die Anordnung von RAF/MEK/ERK-Komplexen koordiniert und die intrazelluläre Signalweiterleitung nach extrazellulärer Stimulation reguliert. Eine abweichende Aktivierung des entsprechenden MAPK-Signalwegs wurde mit vielen humanen Krebsformen und einigen Entwicklungsstörungen in Verbindung gebracht. Der Mechanismus der KSR1-Regulierung ist hochgradig komplex und involviert mehrfach Schritte der Phosphorylierung/Dephosphorylierung. In der vorliegenden Studie wurden etliche neue in-vivo-Phosphorylierungsstellen in mKSR1 mittels massenspektrometrischer Analyse entdeckt. Neben anderen wurde Tyr728 als besonderer regulatorischer Rest identifiziert, welcher durch LCK, einem Mitglied der Src-Kinase-Familie, phosphoryliert wird. Um zu verstehen wie die Phosphorylierung von Tyr728 die Funktion von KSR1 innerhalb der Signalweiterleitung und zellulärer Prozesse regulieren könnte, wurden strukturelle Modellierungen und biochemische Untersuchungen in diese Arbeit integriert. Die Computermodellierung der mKSR1(KD)-Proteinstruktur zeigte starke Wasserstoff- brückenbindungen zwischen Phospho-Tyr728 und den Resten in der Umgebung von Arg649 auf. Dieses Muster war auffällig verändert, wenn Tyr728 nicht phosphoryliert oder substituiert war. Wie anhand biochemischer Analyse untermauert wurde, könnte Arg649 für phospho-Tyr728 als Hauptankerpunkt dienen, um interne Strukturen in KSR1 zu stabilisieren. In Übereinstimmung mit den Ergebnissen der Proteinmodellierung enthüllten die Mutationsstudien, dass die Substitution von Tyr728 mit Phenylalanin zu einer weniger kompakten Interaktion zwischen KSR1 und MEK, einer erleichterten KSR1/B-RAF-Bindung und einer ansteigenden Phosphorylierung von MEK im Komplex mit KSR1 führt. Anhand dieser Erkenntnisse kann man rückschließen, dass Phospho-Tyr728 in die Verstärkung der Interaktionen innerhalb der KSR1/MEK-Grenzfläche und in die Regulierung der Phosphorylierung von KSR1-gebundenem MEK durch entweder RAF- oder KSR1-Kinasen involviert ist. Neben Tyr728 wurde Ser722 als eine neuartige regulatorische Phosphorylierungsstelle identifiziert. Aminosäureaustausche an der betreffenden Position demonstrierten, dass Ser722 die Phosphorylierung von KSR1-gebundenem MEK reguliert ohne die KSR1/MEK-Bindung selbst zu beeinträchtigen. Bedingt durch seine Lokalisierung könnte Ser722 folglich die katalytische Aktivität von KSR1 kontrollieren, indem es den Zugang des Substrates (möglicherweise MEK) zur aktiven Seite der KSR1-Kinase behindert. Zusammen mit Ser722 könnte phosphoryliertes Tyr728 ferner die Kinaseaktivität von KSR1 positiv beeinflussen, infolge von dessen Nähe zur Aktivierungs- und katalytischen Schleife in der KSR1(KD). Wie mittels Strukturmodellierung offengelegt wurde, bildet Phospho-Tyr728 eine Wasserstoffbrücke mit dem hochgradig konservierten Lys685 aus. Folglich hat Phospho-Tyr728 einen stabilisierenden Effekt auf interne Strukturen, welche in die katalytische Reaktion involviert sind, und erleichtert möglicherweise den Phosphattransfer innerhalb der katalytischen Spalte in KSR1. In Anbetracht dieser Fakten scheint es sehr wahrscheinlich, dass die LCK-abhängige Phosphorylierung von Tyr728 eine äußerst wichtige Rolle in der Regulierung der katalytischen Aktivität von KSR1 spielt. Die Ergebnisse der Fraktionierungs- und Morphologieanalysen enthüllten, dass KSR1 für die Phosphorylierung an Tyr728 LCK zum Zytoskelett rekrutiert, was darauf hindeutet, dass dieser Rest die Dynamik des Zytoskeletts und folglich Zellmotilität regulieren könnte. Darüber hinaus ist die Phosphorylierung von Tyr728 in die Regulierung der Zellproliferation involviert, wie anhand einer bedeutend reduzierten Populationsverdopplungszeit von KSR1-Y728F-Zellen im Vergleich zu Zellen, welche wildtypisches KSR1 exprimieren, gezeigt wurde. Zusammenfassend lässt sich sagen, dass die Tyrosin-Phosphorylierung in KSR1 eine neue Verknüpfung zwischen Kinasen der Src-Familie und der MAPK-Signalwirkung enthüllt. Tyr728, die neuartige regulatorische Phosphorylierungsstelle in Maus-KSR1, könnte den Übergang zwischen der Gerüst- und der katalytischen Funktion von KSR1 koordinieren und damit als Kontrollpunkt dienen, um zelluläre Reaktionen fein abzustimmen.
32

Immunhistochemische und funktionelle Charakterisierung der Mitogen-aktivierten Proteinkinase p38 in der inneren Uhr von Drosophila melanogaster / Immunhistochemical and functional characterisation of the mitogen-activated protein kinase p38 in the endogenous clock of Drosophila melanogaster

Dusik, Verena January 2015 (has links) (PDF)
Circadianes und Stress-System sind zwei physiologische Systeme, die dem Organismus helfen sich an Veränderungen ihrer Umwelt anzupassen. Während letzteres spontane und schnelle Antworten auf akute, unvorhersehbare Umweltreize liefert, sagt das circadiane System täglich wiederkehrende Ereignisse vorher and bereitet den Organismus so vorzeitig auf diese nahende Umweltveränderung vor. Dennoch, trotz dieser unterschiedlichen Reaktionsmechanismen agieren beide Systeme nicht komplett autonom. Studien der vergangen Jahre belegen vielmehr eine Interaktion beider Systeme. So postulieren sie zum einem Unterschiede in der Stressantwort in Abhängigkeit von der Tageszeit zu der der Reiz auftritt und weisen zugleich auf eine Zunahme von gestörten biologischen Tagesrhythmen, wie zum Beispiel Schlafstörungen, in Folge von unkontrollierten oder exzessiven Stress hin. Ebenso liefern kürzlich durchgeführte Studien an Vertebraten und Pilzen Hinweise, dass mit p38, eine Stress-aktivierte Kinase, an der Signalweiterleitung zur inneren Uhr beteiligt ist (Hayashi et al., 2003), sogar durch dieses endogene Zeitmesssystem reguliert wird (Vitalini et al., 2007; Lamb et al., 2011) und deuten damit erstmals eine mögliche Verbindung zwischen Stress-induzierten und regulären rhythmischen Anpassungen des Organismus an Umweltveränderungen an. Molekulare und zelluläre Mechanismen dieser Verknüpfung sind bisher noch nicht bekannt. Während die Rolle von p38 MAPK bei der Stress- und Immunantwort in Drosophila melanogaster gut charakterisiert ist, wurden Expression und Funktion von p38 in der inneren Uhr hingegen bislang nicht untersucht. Die hier vorliegende Arbeit hatte daher zum Ziel mittels immunhistochemischer, verhaltensphysiologischer und molekularer Methoden eine mögliche Rolle der Stress-aktivierten Kinase im circadianen System der Fliege aufzudecken. Antikörperfärbungen sowie Studien mit Reporterlinien zeigen deutliche Färbesignale in den s-LNv, l-LNv und DN1a und erbringen erstmals einen Nachweis für p38 Expression in den Uhrneuronen der Fliege. Ebenso scheint die Aktivität von p38 MAPK in den DN1a uhrgesteuert zu sein. So liegt p38 vermehrt in seiner aktiven Form in der Dunkelphase vor und zeigt, neben seiner circadian regulierten Aktivierung, zusätzlich auch eine Inaktivierung durch Licht. 15-Minuten-Lichtpulse in der subjektiven Nacht führen zu einer signifikanten Reduktion von aktivierter, phosphorylierter p38 MAPK in den DN1a von Canton S Wildtypfliegen im Vergleich zu Fliegen ohne Lichtpuls-Behandlung. Aufzeichnungen der Lokomotoraktivität offenbaren zusätzlich die Notwendigkeit von p38 MAPK für wildtypisches Timing der Abendaktivität sowie zum Erhalt von 24-Stunden-Verhaltensrhythmen unter konstanten Dauerdunkel-Bedindungen. So zeigen Fliegen mit reduzierten p38 Level in Uhrneuronen einen verzögerten Beginn der Abendaktivität und stark verlängerte Freilaufperioden. In Übereinstimmung mit Effekten auf das Laufverhalten scheint darüber hinaus die Expression einer dominant-negativen Form von p38b in Drosophila’s wichtigsten Uhrneuronen eine verspätete nukleäre Translokation von Period zur Folge zu haben. Westernblots legen zusätzlich einen Einfluss von p38 auf den Phosphorylierungsgrad von Period nahe und liefern damit einen mögliche Erklärung für den verspäteten Kerneintritt des Uhrproteins. Abschließende Stützung der Westernblotergebnisse bringen in vitro Kinasenassays und deuten auf p38 als eine potentielle „Uhrkinase“ hin, welche auch in vivo Period an Serin 661 sowie weiteren potentiellen Phosphorylierungsstellen phosphorylieren könnte. Zusammengenommen deuten die Ergebnisse der hier vorliegenden Arbeit eindeutig auf eine bedeutende Rolle von p38, neben dessen Funkion im Stress-System, auch im circadianen System der Fliege hin und offenbaren damit die Möglichkeit, dass p38 als Schnittstelle zwischen beider Systeme fungiert. / The circadian and the stress system are two distinct physiological systems that help the organism to adapt to environmental challenges. While the latter elicits reactive responses to acute environmental changes, the circadian system predicts daily occurring alterations and prepares the organism in advance. However, despite of these differences both responses are not mutually exclusive. Studies in the last years obviously prove a strong interaction between both systems showing a strong time-related stress response depending on the time of day of stressor presentation on the one hand and increased disturbances of daily rhythms, like sleep disorders, in consequence of uncontrolled or excessive stress on the other. In line with this fact, recent studies in vertebrates and fungi indicate that p38, a stress-activated Kinase, is involved in signaling to the circadian clock (Hayashi et al., 2003) and in turn is additionally regulated by this timekeeping system (Vitalini et al., 2007; Lamb et al., 2011) providing an interesting link between stress-induced and regularly rhythmic adaptations of the organism to environmental changes. However, little is known about molecular and cellular mechanisms of this interconnection. In Drosophila melanogaster the role of p38 MAPK is well characterized in terms of immune and stress response, p38 expression and function in the circadian clock has not been reported so far. Therefore, the present thesis aimed to elucidate a putative role of the stress-activated Kinase in the fly’s circadian system using an immunohistochemical, behavioral as well as molecular approach. Surprisingly, for the first time antibody as well as reporterline studies cleary prove p38 expression in Drosophila clock neurons showing visible staining in s-LNvs, l-LNvs and DN1as. Moreover p38 MAPK in DN1as seems to be activated in a clock-dependent manner. p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. 15 minutes light pulse applied during the dark phase lead to a significant reduction in phosphorylated and activated p38 MAPK in Canton S wildtype flies compared to flies without light pulse treatment. In addition, locomotor activity recordings reveal that p38 is essential for a wild-type timing of evening activity and for maintaining ~24h behavioral rhythms under constant darkness. Flies with reduced p38 activity in clock neurons show delayed evening activity onsets and drastically lengthened the period of their free-running rhythms. In line with these effects on locomotor behavior, the nuclear translocation of the clock protein Period is significantly delayed on the expression of a dominant-negative form of p38b in Drosophila’s most important clock neurons. Western Blots reveal that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays additionally confirm the Western Blot results and point to p38 as a potential “clock kinase” phosphorylating Period at Serin 661 and putative phosphorylation sites. Taken together, the results of the present thesis clearly indicate a prominent role of p38 in the circadian system of the fly besides its function in stress-input pathways und open up the possibility of p38 MAPK being a nodal point of both physiological systems.
33

Die Rolle mitogener und stressinduzierter MAPK-Signalwege in der Regulation von keratinozytären Wachstums- und Differenzierungsvorgängen / The role of mitogenic and stress-induced MAPK pathways in the regulation of growth and differentiation of keratinocytes

Schmidt, Marc January 2001 (has links) (PDF)
Fehlgeleitete Proliferations- und Differenzierungsprozesse von Keratinozyten spielen eine entscheidende Rolle in der Pathogenese vieler Hauterkrankungen. Die intrazellulären Signalmechanismen, die die Balance zwischen Keratinozytenwachstum und -differen-zierung steuern, sind bislang weitgehend unbekannt. In dieser Arbeit wurde die Bedeutung Mitogen-aktivierter Proteinkinase (MAPK-) Signalwege in keratinozytären Wachstums- und Differenzierungsvorgängen untersucht. Es konnte gezeigt werden, daß Induktion von Keratinozytendifferenzierung durch Erhöhung der extrazellulären Calciumkonzentration mit einer raschen und transienten Aktivierung des Raf/MEK/Erk- (MAPK-) Signalweges verbunden ist, während keine veränderte Aktivität der stressinduzierten MAPK Jnk und p38 nachweisbar war. Die calciuminduzierte Erk-Aktivierung unterschied sich in ihrer Kinetik von mitogener Erk-Aktivierung durch den Epidermalen Wachstumsfaktor (EGF) und konnte durch Veränderungen der intrazellulären Calciumkonzentration moduliert werden. Während die mitogene Erk-Aktivierung durch die kleine GTPase Ras vermittelt wird, erfolgte calciuminduzierte Aktivierung von Erk Ras-unabhängig, was auf einen fundamentalen Unterschied mitogener und differenzierungsinduzierender Stimuli hinsichtlich ihrer Aktivierungsmechanismen der Raf/MEK/Erk-Kaskade hindeutet. Trotz der transienten Natur der calciuminduzierten Erk-Aktivierung waren die calcium-vermittelte Expression des Zellzykusinhibitors p21/Cip1 und des Differenzierungsmarkers Involucrin sensitiv für MEK-Inhibition, was auf eine wichtige Rolle des Raf/MEK/Erk-Signalweges in frühen Stadien des Differenzierungsprozesses hinweist. Wichtige Konvergenzpunkte zwischen calcium- und MAPK-abhängigen Signalwegen scheinen die beiden calciumbindenden S100-Proteine MRP8 und MRP14 zu sein. Beide Proteine werden in vitro differenzierungsabhängig exprimiert und translozieren sowohl nach Erhöhung der intrazellulären Calciumkonzentration als auch nach Stimulation stress-aktivierter MAPK an Zytoskelettstrukturen. Untersuchung der Expression von MRP8 und MRP14 in paraffin- und kryofixierten Serienschnitten gesunder und pathologisch veränderter Haut ergab, dass deren Expression normalerweise auf differenzierende Zellen im Haarfollikel beschränkt ist, jedoch in differenzierten Hautschichten hyperproliferativer oder tumoröser Haut massiv induziert werden kann. In der hier vorgestellten Arbeit wurden interessante neue Signalbeziehungen identifiziert, deren Entdeckung einen wichtigen Beitrag zum Verständnis der regulatorischen Mechanismen leisten könnte, durch die die Epidermis ihre funktionell wichtige Homöostase erhält. / Abnormal proliferation and differentiation processes play an important role in the pathogenesis of various skin diseases. The intracellular signaling mechanisms governing the balance between growth and differentiation of keratinocytes are still largely unknown. In this thesis the role of mitogen-activated protein kinase (MAPK) cascades in keratinocyte growth and differentiation was analysed. Induction of keratinocyte differentiation by elevation of extracellular calcium levels resulted in a rapid and transient activation of the Raf/MEK/Erk (MAPK) pathway but did not increase activity of the stress-activated Jnk or p38 MAPKs. Calcium-induced Erk activation differed in kinetics from mitogenic Erk activation by epidermal growth factor (EGF) and and could be modulated by alterations of intracellular calcium levels. While EGF-induced Erk activation was mediated by the small GTPase Ras, calcium-induced Erk activity occurred independently of active Ras. This suggests that proliferative and differentiation-inducing stimuli use alternative mechanisms to activate the Raf/MEK/Erk pathway. Despite the transient nature of Erk activation, calcium-induced expression of the cell cycle inhibitor protein p21 and the differentiation marker involucrin were sensitive to MEK inhibition which implies a role for the Raf/MEK/Erk pathway in early stages of keratinocyte differentiation. The two calcium binding S100 proteins additionally studied here, MRP8 and MRP14, seem to represent important convergent points between calcium and MAPK signaling. In vitro both proteins are expressed in a differentiation-dependent manner in keratinocytes. Elevation of intracellular calcium levels as well as activation of stress-activated MAPKs resulted in translocation of MRP8/MRP14 complexes to the cytoskeleton. When expression of MRP8 and MRP14 was analysed in serial paraffin- or kryo-sections of healthy or diseased skin, signals in normal skin were largely restricted to differentiating cells of the hair follicle, however, additionally a strong induction of MRP8/14 expression was observed in differentiating epidermal layers of hyperproliferative or tumorigenic skin. In this thesis important novel signaling interactions were identified which provide new basic insights into the molecular mechanisms involved in the regulation of skin homeostasis which is essential for the maintenance of the multiple functions of the epidermis.
34

Role of Skp2 in epithelial dysplasia and carcinoma of the cervix

Chen, Tzu-Ping 09 September 2003 (has links)
The F-box protein Skp2 (S-phase kinase associated protein 2) positively regulates the G1-S transition by controlling the cell cycle inhibitor p27Kip1. The p42/p44 mitogen-activated protein (MAP) kinase activation is also necessary for the cell cycle progression. p27Kip1 acts as a negative regulator of the cell cycle by inhibiting the activity of cyclin/cdk complexes during G0 and G1. RT-PCR, Western blotting and immunohistochemical staining were used to assay their relationship with cervical lesion development. In RT-PCR and western blotting, Skp2 mRNA and protein were expressed mostly in carcinoma tissues. At Fisher¡¦s exact test showed that Skp2, p27Kip1 and p42/p44 MAP Kinase are strongly associated with disease progession respectively (P < 0.0001, P < 0.0001, P = 0.0043). We also found a postive correlation between the expression of Skp2 and p42/p44 MAP Kinase (P = 0.0097).
35

La MAP kinase p38γ influence la structure des cardiomyocytes

Plamondon, Philippe January 2014 (has links)
Le cœur est un organe central au fonctionnement du système cardiovasculaire. Il est physiologiquement compartimenté et est constitué de cellules spécialisées qui régulent les impulsions électriques ainsi que la contraction du myocarde. Le cœur adapte le flux sanguin en fonction des besoins du corps. En condition pathologique, le cœur recourt toutefois à des mécanismes compensatoires. Au niveau physiologique, la compensation s’observe par l’hypertrophie des cardiomyocytes qui, bien que bénéfique à court terme, exacerbe à long terme la fonction cardiaque. L’activation des « mitogen activated protein kinases » (MAPK) contribue autant au maintien de la fonction physiologique qu’à la détérioration pathologique du myocarde et serait également une cause de l’hypertrophie observée. Parmi les 5 groupes de MAPK connues, la MAPK p38 est formée de 4 isoformes dont les sérine/thréonine kinases p38α et p38γ sont exprimées de façon prédominante dans le cœur. Les p38 partagent les mêmes activateurs, mais leurs effecteurs diffèrent. Bien que le rôle de p38α semble impliqué dans l’aggravement des troubles cardiaques, celui de p38γ ne semble pas redondant à p38α et demeure incompris. Cette isoforme possède un motif de liaison aux domaines PDZ, unique chez les MAP kinases. Également, chez les cellules cardiaques, elle transloque au noyau en condition de stress. Le but de l’étude ici est de comprendre le rôle de p38γ et de ses motifs uniques sur la structure et la taille des cardiomyocytes. Afin de répondre au but de l’étude, plusieurs mutants adénoviraux de p38 ont été conçus. Un des mutants ne possède pas le motif de liaison aux domaines PDZ, deux autres contrôlent la localisation cellulaire soit au noyau, soit au cytoplasme, et un autre mutant est muté au site de phosphorylation. Des cardiomyocytes en culture ont été infectés par les différents mutants en présence de leur activateur en amont ou de la β-galactosidase. Les réseaux d’α-actinine, ainsi que la taille des cardiomyocytes, ont été observés par microscopie. Les observations effectuées montrent que p38γ entraîne une désorganisation des réseaux d’α-actinine lorsqu’il est phosphorylé. Également, il facilite l’hypertrophie des cardiomyocytes en présence de son activateur s’il est forcé hors du noyau ou en l’absence de son motif de liaison aux domaines PDZ. En conclusion, les résultats obtenus suggèrent que p38γ exerce bel et bien un rôle dans le maintien structural des cardiomyocytes par l’intermédiaire de l’α-actinine.
36

Melanophore signaling : regulation and application /

Andersson, Tony, P. M. January 2003 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2003. / Härtill 5 uppsatser.
37

Rôle essentiel de Mek1 dans le développement des tissus extra embryonnaires de la souris /

Bissonauth, Vickram. January 2006 (has links) (PDF)
Thèse (Ph. D.)--Université Laval, 2006. / Bibliogr.: f. 161-205. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
38

La contribution de Mek2 dans le développement du placenta murin /

Guillemette, Stéphanie. January 2007 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2007. / Bibliogr.: f. [115]-120. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
39

Einfluss von endogenem NO auf die Phosphorylierung der p38-MAP-Kinase in isolierten Kardiomyozyten der adulten Ratte und Maus

Wingerning, Sandra January 2007 (has links) (PDF)
Zugl.: Giessen, Univ., Diss., 2007
40

Einfluss von endogenem NO auf die Phosphorylierung der p38-MAP-Kinase in isolierten Kardiomyozyten der adulten Ratte und Maus

Wingerning, Sandra January 2007 (has links)
Zugl.: Giessen, Univ., Diss., 2007

Page generated in 0.035 seconds