1 |
Rôle du couple Flt3-ligand/Flt3 et de l'activation des "Mitogen-activated protein kinases" p38 dans la dysmégacaryopoïèse des patients atteints de myélofibrose primitive / Rôle du couple Flt3-ligand/Flt3 et de l'activation des "Mitogen-activated protein kinases" p38 dans la dysmégacaryopoïèse des patients atteints de myélofibrose primitiveDesterke, Christophe 25 May 2011 (has links)
La myélofibrose primitive (MFP) est un néoplasme myéloprolifératif (NMP) chronique BCR-ABL1-négatif associant une dérégulation de l’hématopoïèse (myéloprolifération, dysmégacaryopoïèse et migration des cellules souches et progéniteurs hématopoïétiques (CSH/PH)) à une altération du stroma médullaire et splénique (fibrose ostéomyélosclérose, néoangiogenèse). Le mégacaryocyte (MK) est un acteur majeur de sa pathogenèse, via la production de cytokines et facteurs fibrosants, dans un contexte inflammatoire. Plusieurs arguments suggèrent que les mutations JAK2V617F et MPL515L/K qui caractérisent les NMP ne sont pas les événements initiaux de la MFP car elles ne sont retrouvées que chez la moitié des patients. L’objectif de mon travail a été de rechercher si d’autres anomalies, géniques ou non, pouvaient expliquer la pathogenèse de la MFP. Pour cela, parallèlement à une démarche génomique (transcriptome et CGH array), nous avons développé une approche de biologie cellulaire ciblée sur le rôle du stroma hématopoïétique. Bien que n’ayant pas identifié d’autres anomalies génomiques que celles décrites dans la littérature et en particulier, la délétion 13q, les approches génomiques que nous avons développées nous ont permis de préciser les bornes de cette délétion dans les PH CD34+ et les polynucléaires des patients. Cette délétion (région chromosomique minimale 13q14-13q21) est située à 2 mégabases (télomérique) du cluster FLT où est localisé le gène FLT3. Plusieurs arguments nous ont ensuite conduits à rechercher si le couple Flt3-ligand/Flt3 était impliqué dans la dérégulation de l’hématopoïèse et plus particulièrement dans la dysmégacaryopoïèse observée chez les patients. Parmi ceux-ci, citons : 1) l’existence d’une modulation d’expression de gènes inclus dans la zone de délétion 13q et dans le cluster FLT, dont le gène FLT3 et 2) le fait que Flt3, un récepteur clé de la régulation de l’hématopoïèse primitive, soit souvent impliqué dans la pathogenèse d’hémopathies malignes et que son ligand, Flt3-ligand, soit majoritairement produit par le stroma hématopoïétique. Notre étude montre une dérégulation de Flt3 et des MAPKs p38 dans les PH CD34+ et les MK des patients atteints de MFP et ceci, quelque soit leur statut mutationnel Jak2. Elle démontre également que la persistance de la stimulation de l’axe Flt3/p38 en réponse à une production accrue de Flt3 ligand, participe à la dysmégacaryopoïèse qui caractérise la maladie. En effet, nous avons mis en évidence : 1) une augmentation du taux sérique de Flt3 ligand et de son expression par les cellules du stroma médullaire et splénique ainsi que par les PH des patients atteints de MFP, 2) une surexpression spécifique de son récepteur Flt3 et de sa phosphorylation dans les CSH/PH CD34+ et les progéniteurs mégacaryocytaires (MK), qui persistent au cours de la différenciation MK, quelque soit le statut mutationnel de Jak2 des patients, 3) une activation de Flt3 dans les progéniteurs MK en réponse au Flt3 ligand conduisant à la phosphorylation en cascade de la voie de signalisation des MAPKs p38 et à l’expression de ses gènes cibles tels que AP-1, p53, NFATc4, ATF2, IL-8, 4) une restauration de la mégacaryopoïèse et une inhibition de la migration (Flt3-ligand)-dépendante des progéniteurs MK des patients après inhibition de Flt3 ou de p38.Nos résultats confirment l’importance d’une altération des MAPKs dans une dérégulation de l’hématopoïèse et soulignent le rôle d’une activation persistante de la voie p38, via le couple Flt3-ligand/Flt3, dans la dysmégacaryopoïèse qui caractérise la myélofibrose primitive. Ils suggèrent également que cette dérégulation participe au processus inflammatoire à l’origine de la réaction stromale et « lit » d’une transformation leucémique potentielle. Ce dialogue altéré entre les cellules hématopoïétiques pathologiques (Bad seeds), en particulier mégacaryocytaires et les cellules stromales (Bad soil), conforte notre concept « Bad seeds in Bad soil ». / The primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm (NMP) BCR-ABL1-negative associating a dysregulation of hematopoiesis (myeloproliferation, dysmegacaryopoiesis and egress of hematopoietic stem and progenitor cells (HSC / PH)) from an altered bone marrow stroma (osteosclerosis, fibrosis, angiogenesis) to the spleen. The megakaryocyte (MK) is a major player in its pathogenesis through the production of cytokines and fibrotic factors in an inflammatory context. Several arguments suggest that mutations JAK2V617F and MPL515L / K which characterize the NMP are not the initial events of the PMF since they are found only in half of patients. The aim of my work was to investigate whether other abnormalities, genetic or otherwise, could explain the pathogenesis of the PMF. For this, a process parallel to genomics (transcriptome and CGH array), we developed a cell biology approach focused on the role of hematopoietic stroma.Although we have not identified other genomic abnormalities as those described in the literature and in particular, deletion 13q, by genomic approaches we have clarified the limits of this deletion in the PH CD34+ and polymorphonuclear patients. This deletion (chromosomal region 13q14-13q21 minimum) is located 2 megabases (telomeric) of the cluster where is located the FLT gene FLT3. Several arguments have then led to inquire whether the couple was involved in Flt3-ligand/Flt3 deregulation of hematopoiesis, especially in the dysmegakaryopoiesis observed in patients. Among these are: 1) the existence of an expression modulation of genes included in the area of deletion 13q and FLT in the cluster, as gene FLT3 and 2) the fact that Flt3, a key receptor the regulation of primitive hematopoiesis, is often implicated in the pathogenesis of hematologic malignancies and its ligand, Flt3-ligand, was predominantly produced by the hematopoietic stroma.Our study shows dysregulation of Flt3 and p38 MAPKs in CD34+ and PH MK from patients with PMF and this, whatever their Jak2 mutation status. It also shows that persistent stimulation of the axis Flt3/p38 in response to increased production of Flt3 ligand, participates in the dysmegacaryopoiesis that characterizes the disease. Indeed, we have highlighted: 1) an increase in serum Flt3 ligand and its expression by stromal cells and bone marrow and spleen by PH patients with PMF, 2) a specific overexpression of its receptor Flt3 and its phosphorylation in HSC / PH CD34+ and megakaryocytic progenitors (MK), which persist during the MK differentiation, regardless of the mutational status of Jak2 patients, 3) activation of Flt3 in MK progenitors by the Flt3 ligand leads to phosphorylation cascade signaling pathway, p38 MAPK and expression of its target genes such as AP-1, p53, NFATc4, ATF2, IL-8, 4) a restoration of megakaryopoiesis and inhibition of migration (Flt3-ligand)-dependent patients after of MK progenitors by Flt3 or p38 inhibitors.Our results confirm the importance of an alteration of MAPKs in a deregulation of hematopoiesis and highlight the role of a persistent activation of the p38 pathway, via the couple Flt3-ligand/Flt3 in the dysmegakaryopoiesis that characterizes idiopathic myelofibrosis. They also suggest that this dysregulation contributes to the inflammatory process at the origin of the stromal reaction and "bed" of a leukemic transformation potential. The dialogue among impaired hematopoietic cell disease (Bad Seeds), especially the stromal cells and megakaryocyte (Bad Soil), reinforces our concept of "Bad Seeds in Bad Soil". This work could help improve the dialogue with therapeutic approaches targeting the axis Flt3-ligand/Flt3 mediated by activation of p38 which, by reducing the inflammatory process, re-establish a link between the "seed" and the "Soil".
|
2 |
Rôle du couple Flt3-ligand/Flt3 et de l'activation des "Mitogen-activated protein kinases" p38 dans la dysmégacaryopoïèse des patients atteints de myélofibrose primitive.Desterke, Christophe 25 May 2011 (has links) (PDF)
La myélofibrose primitive (MFP) est un néoplasme myéloprolifératif (NMP) chronique BCR-ABL1-négatif associant une dérégulation de l'hématopoïèse (myéloprolifération, dysmégacaryopoïèse et migration des cellules souches et progéniteurs hématopoïétiques (CSH/PH)) à une altération du stroma médullaire et splénique (fibrose ostéomyélosclérose, néoangiogenèse). Le mégacaryocyte (MK) est un acteur majeur de sa pathogenèse, via la production de cytokines et facteurs fibrosants, dans un contexte inflammatoire. Plusieurs arguments suggèrent que les mutations JAK2V617F et MPL515L/K qui caractérisent les NMP ne sont pas les événements initiaux de la MFP car elles ne sont retrouvées que chez la moitié des patients. L'objectif de mon travail a été de rechercher si d'autres anomalies, géniques ou non, pouvaient expliquer la pathogenèse de la MFP. Pour cela, parallèlement à une démarche génomique (transcriptome et CGH array), nous avons développé une approche de biologie cellulaire ciblée sur le rôle du stroma hématopoïétique. Bien que n'ayant pas identifié d'autres anomalies génomiques que celles décrites dans la littérature et en particulier, la délétion 13q, les approches génomiques que nous avons développées nous ont permis de préciser les bornes de cette délétion dans les PH CD34+ et les polynucléaires des patients. Cette délétion (région chromosomique minimale 13q14-13q21) est située à 2 mégabases (télomérique) du cluster FLT où est localisé le gène FLT3. Plusieurs arguments nous ont ensuite conduits à rechercher si le couple Flt3-ligand/Flt3 était impliqué dans la dérégulation de l'hématopoïèse et plus particulièrement dans la dysmégacaryopoïèse observée chez les patients. Parmi ceux-ci, citons : 1) l'existence d'une modulation d'expression de gènes inclus dans la zone de délétion 13q et dans le cluster FLT, dont le gène FLT3 et 2) le fait que Flt3, un récepteur clé de la régulation de l'hématopoïèse primitive, soit souvent impliqué dans la pathogenèse d'hémopathies malignes et que son ligand, Flt3-ligand, soit majoritairement produit par le stroma hématopoïétique. Notre étude montre une dérégulation de Flt3 et des MAPKs p38 dans les PH CD34+ et les MK des patients atteints de MFP et ceci, quelque soit leur statut mutationnel Jak2. Elle démontre également que la persistance de la stimulation de l'axe Flt3/p38 en réponse à une production accrue de Flt3 ligand, participe à la dysmégacaryopoïèse qui caractérise la maladie. En effet, nous avons mis en évidence : 1) une augmentation du taux sérique de Flt3 ligand et de son expression par les cellules du stroma médullaire et splénique ainsi que par les PH des patients atteints de MFP, 2) une surexpression spécifique de son récepteur Flt3 et de sa phosphorylation dans les CSH/PH CD34+ et les progéniteurs mégacaryocytaires (MK), qui persistent au cours de la différenciation MK, quelque soit le statut mutationnel de Jak2 des patients, 3) une activation de Flt3 dans les progéniteurs MK en réponse au Flt3 ligand conduisant à la phosphorylation en cascade de la voie de signalisation des MAPKs p38 et à l'expression de ses gènes cibles tels que AP-1, p53, NFATc4, ATF2, IL-8, 4) une restauration de la mégacaryopoïèse et une inhibition de la migration (Flt3-ligand)-dépendante des progéniteurs MK des patients après inhibition de Flt3 ou de p38.Nos résultats confirment l'importance d'une altération des MAPKs dans une dérégulation de l'hématopoïèse et soulignent le rôle d'une activation persistante de la voie p38, via le couple Flt3-ligand/Flt3, dans la dysmégacaryopoïèse qui caractérise la myélofibrose primitive. Ils suggèrent également que cette dérégulation participe au processus inflammatoire à l'origine de la réaction stromale et " lit " d'une transformation leucémique potentielle. Ce dialogue altéré entre les cellules hématopoïétiques pathologiques (Bad seeds), en particulier mégacaryocytaires et les cellules stromales (Bad soil), conforte notre concept " Bad seeds in Bad soil ". Ce travail pourrait contribuer à l'amélioration de ce dialogue par des approches thérapeutiques ciblées sur l'axe Flt3-ligand/Flt3 médié par l'activation de p38 qui, en réduisant le processus inflammatoire, rétablirait un lien entre le " Seed " et le " Soil ".
|
3 |
Étude des mécanismes de résistance à l’Irinotécan dans le cancer colorectal : implication de la MAPK p38 / Study of the resistance's mechanisms to Irinotecan in colorectal cancer : p38 MAPK's involvement.Paillas, Salomé 12 September 2011 (has links)
Malgré les récentes avancées réalisées dans le traitement du cancer du côlon, la résistance des tumeurs est une cause fréquente de l'échec des chimiothérapies. Cette thèse a pour objectif d'identifier les mécanismes moléculaires impliqués dans la résistance à l'Irinotécan, un agent couramment utilisé dans le traitement des cancers colorectaux. Nous avons montré l'implication de la MAPK p38 dans la résistance à l'Irinotécan et en particulier avons démontré que les isoformes α et β étaient impliquées dans cette résistance. De plus, nous avons corrélé la faible phosphorylation de p38 dans des tumeurs coliques primaires de patient sensibles au traitement à l'Irinotécan par rapport aux patients non répondeurs. Dans la suite du projet nous avons étudié le rôle de p38 dans les processus autophagiques et leur impact dans la réponse à l'Irinotécan. Nous avons démontré que p38 induisait une autophagie qui mène à la survie des cellules cancéreuses déficientes pour p53, et que l'inhibition de l'autophagie sensibilisait ces cellules au traitement au SN38, métabolite actif de l'Irinotécan. Enfin de manière préliminaire, nous avons étudié le rôle de p38 dans l'augmentation du métabolisme lipidique dans des cellules déficiente pour p53. Ces travaux ouvrent de nouvelles voies de recherche pour l'identification des mécanismes impliqués dans la résistance aux traitements anticancéreux et pour le développement d'approches pharmacologiques pour contourner la résistance. / Despite the recent advances achieved in the treatment of colon cancer, tumor resistance is a frequent cause of chemotherapy failure. This work was aimed to determine the molecular mechanisms involved in the resistance to Irinotecan, an anticancer agent widely used in colorectal cancer treatment. We have demonstrated that the α and β forms of p38 MAPK were involved in this resistance. Moreover, we have correlated less phospho-p38 in colon cancer primary tumor of patients sensitive to Irinotecan-based treatment, compared to non responder patients. During the project, we aimed to determine the role of p38 MAPK in the processes of autophagy in colorectal cancer cells, and their impact in Irinotecan cytotoxicity. We have shown that p38 induced survival autophagy in p53 deficient cells. Then, we have shown that autophagy inhibition increased the SN38 cytotoxicity (active metabolite of Irinotecan) in p53 deficient cell lines. Finally, we have studied the role of p38 MAPK in lipid metabolism in p53 deficient cells. All these findings highlight new ways of research to identify the molecular mechanisms involved in chemoresistance as well as new pharmacological approaches to overcome the resistance.
|
4 |
Identification de nouvelles cibles thérapeutiques dans le cancer de la prostate / Identification of new therapeutic targets in prostate cancerRakotondrahaso, Valomanda 07 October 2019 (has links)
En France, le cancer de la prostate est le premier cancer par son incidence ainsi que la troisième cause de mortalité pour cette pathologie. La progression de la maladie est dépendante des androgènes. Ainsi l’un des traitements majeurs du cancer de la prostate est la déprivation androgénique : le blocage de la production ou de l’action des androgènes conduit à inhiber la croissance tumorale. La plupart des patients répondent à cette thérapie, cependant l’évolution de la pathologie vers un stade d’insensibilité à la castration est inévitable, ce qui est associé à un mauvais pronostic. Au cours de la progression du cancer de la prostate, la voie de signalisation des androgènes demeure active grâce au récepteur des androgènes. Ce récepteur est une cible idéale afin de traiter et de bloquer la progression tumorale. Une telle inhibition du récepteur des androgènes peut être faite par l’utilisation d’un anti-androgènes de seconde génération : l’Enzalutamide. Cette molécule perturbe l’interaction entre le récepteur des androgènes et son ligand, elle peut bloquer la translocation nucléaire du récepteur activé mais elle empêche aussi son interaction avec l’ADN. Bien que l’utilisation de l’Enzalutamide ait contribué à améliorer la survie des patients, son utilisation conduit à l’émergence d’une résistance à l’Enzalutamide, ce qui constitue un défi thérapeutique considérable.L’objectif principal de mes travaux de thèse est d’identifier de nouvelles protéines afin d’améliorer les effets thérapeutiques de l’Enzalutamide ou de surmonter la résistance à ce médicament. Ainsi dans notre étude, nous avons supposé que le traitement à l’Enzalutamide induit l’activation de voies de signalisation spécifiques, pouvant être impliquées soit dans le mécanisme d’action du médicament ou dans la résistance à ce dernier. Cette hypothèse nous a conduit à l’identification des protéines MAPKs p38, qui sont activées lors d’un traitement avec l’Enzalutamide. Nos résultats démontrent que la combinaison d’Enzalutamide et d’inhibiteur de la MAPK p38 a un effet antitumoral significatif aussi bien in vitro que in vivo. Le mécanisme d’action de cet effet cytotoxique et synergique reste à l’étude. Ces données permettraient d’approfondir la compréhension des mécanismes de résistance lors d’un traitement à l’Enzalutamide et contribuer à la potentialisation de l’effet thérapeutique de cet antiandrogènes. / In France, prostate cancer is the most frequently diagnosed male cancer and its progression is tightly associated with the androgen signals. One of the major treatments for prostate cancer is androgen deprivation therapy which is based on blocking the production or action of the androgens to induce a tumor growth inhibition. Most patients respond to this therapy, however they still reach a castration-resistant stage which is associated with a poor prognosis. Since the progression till this late cancer stage is still driven by the androgen signaling pathway, the second-line therapy is focused on targeting the active androgen receptor by using a second-generation anti-androgens: the Enzalutamide. This molecule disrupts the interaction between the androgen receptor and its ligand, it can block the nuclear translocation of the receptor and it also prevents the receptor interaction with DNA. Although Enzalutamide treatment has enhance the patient survival, some drug resistance still arises which is a considerable therapeutic challenge.The main objective of my thesis is to identify new proteins in order to improve the therapeutic effects of Enzalutamide or to overcome resistance to this drug. Thus, in our study, we assumed that Enzalutamide treatment induces the activation of specific signaling pathways which may be involved in the cancer cell response to the treatment. This hypothesis led us to identify the MAPKs p38 proteins, which are activated during treatment with Enzalutamide. Our results show that the combination of Enzalutamide and p38 inhibitor has a significant antitumor effect both in vitro and in vivo. The mechanism of action of this cytotoxic and synergistic effect remains under study. These data would allow a better understanding of the Enzalutamide resistance mechanisms and contribute to the enhancement of the therapeutic effect of this anti-androgen.
|
5 |
Tyrosinkinaseinhibition bei humanen Non-Hodgkin-Lymphomen: Präklinische Evaluation von Sorafenib / Tyrosine Kinase Inhibition at Human Non-Hodgkin s Lymphomas: Preclinical Evaluation of SorafenibSchuelper, Nikolai 30 November 2010 (has links)
No description available.
|
6 |
Signal transduction mechanisms for stem cell differentation into cardiomyocytesHumphrey, Peter Saah January 2009 (has links)
Cardiovascular diseases are among the leading causes of death worldwide and particularly in the developed World. The search for new therapeutic approaches for improving the functions of the damaged heart is therefore a critical endeavour. Myocardial infarction, which can lead to heart failure, is associated with irreversible loss of functional cardiomyocytes. The loss of cardiomyocytes poses a major difficulty for treating the damaged heart since terminally differentiated cardiomyocytes have very limited regeneration potential. Currently, the only effective treatment for severe heart failure is heart transplantation but this option is limited by the acute shortage of donor hearts. The high incidence of heart diseases and the scarcity donor hearts underline the urgent need to find alternative therapeutic approaches for treating cardiovascular diseases. Pluripotent embryonic stem (ES) cells can differentiate into functional cardiomyocytes. Therefore the engraftment of ES cell-derived functional cardiomyocytes or cardiac progenitor cells into the damaged heart to regenerate healthy myocardial tissues may be used to treat damaged hearts. Stem cell-based therapy therefore holds a great potential as a very attractive alternative to heart transplant for treating heart failure and other cardiovascular diseases. A major obstacle to the realisation of stem cell-based therapy is the lack of donor cells and this in turn is due to the fact that, currently, the molecular mechanisms or the regulatory signal transduction mechanisms that are responsible for mediating ES cell differentiation into cardiomyocytes are not well understood. Overcoming this huge scientific challenge is absolutely necessary before the use of stem cell-derived cardiomyocytes to treat the damaged heart can become a reality. Therefore the aim of this thesis was to investigate the signal transduction pathways that are involved in the differentiation of stem cells into cardiomyocytes. The first objective was the establishment and use of cardiomyocyte differentiation models using H9c2 cells and P19 stem cells to accomplish the specific objectives of the thesis. The specific objectives of the thesis were, the investigation of the roles of (i) nitric oxide (ii) protein kinase C (PKC), (iii) p38 mitogen-activated protein kinase (p38 MAPK) (vi) phosphoinositide 3-kinase (PI3K) and (vi) nuclear factor-kappa B (NF-kB) signalling pathways in the differentiation of stem cells to cardiomyocytes and, more importantly, to identify where possible any points of convergence and potential cross-talk between pathways that may be critical for differentiation to occur. P19 cells were routinely cultured in alpha minimal essential medium (α-MEM) supplemented with 100 units/ml penicillin /100 μg/ml streptomycin and 10% foetal bovine serum (FBS). P19 cell differentiation was initiated by culturing the cells in microbiological plates in medium containing 0.8 % DMSO to form embryoid bodies (EB). This was followed by transfer of EBs to cell culture grade dishes after four days. H9c2 cells were cultured in Dulbecco’s Modified Eagle’s medium (DMEM) supplemented with 10% FBS. Differentiation was initiated by incubating the cells in medium containing 1% FBS. In both models, when drugs were employed, they were added to cells for one hour prior to initiating differentiation. Cell monolayers were monitored daily over a period of 12 or 14 days. H9c2 cells were monitored for morphological changes and P19 cells were monitored for beating cardiomyocytes. Lysates were generated in parallel for western blot analysis of changes in cardiac myosin heavy chain (MHC), ventricular myosin chain light chain 1(MLC-1v) or troponin I (cTnI) using specific monoclonal antibodies. H9c2 cells cultured in 1% serum underwent differentiation as shown by the timedependent formation of myotubes, accompanied by a parallel increase in expression of both MHC and MLC-1v. These changes were however not apparent until 4 to 6 days after growth arrest and increased with time, reaching a peak at day 12 to 14. P19 stem cells cultured in DMSO containing medium differentiated as shown by the timedependent appearance of beating cardiomyocytes and this was accompanied by the expression of cTnI. The differentiation of both P19 stem cells and H9c2 into cardiomyocytes was blocked by the PI3K inhibitor LY294002, PKC inhibitor BIM-I and the p38 MAPK inhibitor SB2035800. However when LY294002, BIM-I or SB2035800 were added after the initiation of DMSO-induced P19 stem cell differentiation, each inhibitor failed to block the cell differentiation into beating cardiomyocytes. The NF-kB activation inhibitor, CAPE, blocked H9c2 cell differentiation into cardiomyocytes. Fast nitric oxide releasing donors (SIN-1 and NOC-5) markedly delayed the onset of differentiation of H9c2 cells into cardiomyocytes while slow nitric oxide releasing donors (SNAP and NOC-18) were less effective in delaying the onset of differentiation or long term differentiation of H9c2 cells into cardiomyocytes. Akt (protein kinase B) is the key downstream target of PI3K. Our cross-talk data also showed that PKC inhibition and p38 MAPK inhibition respectively enhanced and reduced the activation of Akt, as determined by the phosphorylation of Akt at serine residue 473. In conclusion, PKC, PI3K, p38 MAPK and NF-kB are relevant for the differentiation of stem cells into cardiomyocytes. Our data also show that the PKC, PI3K and p38 MAPK signalling pathways are activated as very early events during the differentiation of stem cells into cardiomyocytes. Our data also suggest that PKC may negatively regulate Akt activation while p38 MAPK inhibition inhibits Akt activation. Our fast NO releasing donor data suggest that nitric oxide may negatively regulate H9c2 cell differentiation.
|
Page generated in 0.0415 seconds