101 |
Critical Sets in Latin Squares and Associated StructuresBean, Richard Winston Unknown Date (has links)
A critical set in a Latin square of order n is a set of entries in an n×n array which can be embedded in precisely one Latin square of order n, with the property that if any entry of the critical set is deleted, the remaining set can be embedded in more than one Latin square of order n. The number of critical sets grows super-exponentially as the order of the Latin square increases. It is difficult to find patterns in Latin squares of small order (order 5 or less) which can be generalised in the process of creating new theorems. Thus, I have written many algorithms to find critical sets with various properties in Latin squares of order greater than 5, and to deal with other related structures. Some algorithms used in the body of the thesis are presented in Chapter 3; results which arise from the computational studies and observations of the patterns and subsequent results are presented in Chapters 4, 5, 6, 7 and 8. The cardinality of the largest critical set in any Latin square of order n is denoted by lcs(n). In 1978 Curran and van Rees proved that lcs(n)<=n²-n. In Chapter 4, it is shown that lcs(n)<=n²-3n+3. Chapter 5 provides new bounds on the maximum number of intercalates in Latin squares of orders m×2^α (m odd, α>=2) and m×2^α+1 (m odd, α>=2 and α≠3), and a new lower bound on lcs(4m). It also discusses critical sets in intercalate-rich Latin squares of orders 11 and 14. In Chapter 6 a construction is given which verifies the existence of a critical set of size n²÷ 4 + 1 when n is even and n>=6. The construction is based on the discovery of a critical set of size 17 for a Latin square of order 8. In Chapter 7 the representation of Steiner trades of volume less than or equal to nine is examined. Computational results are used to identify those trades for which the associated partial Latin square can be decomposed into six disjoint Latin interchanges. Chapter 8 focusses on critical sets in Latin squares of order at most six and extensive computational routines are used to identify all the critical sets of different sizes in these Latin squares.
|
102 |
Um estudo sobre as origens da L?gica Matem?itcaSousa, Giselle Costa de 13 June 2008 (has links)
Made available in DSpace on 2014-12-17T14:35:50Z (GMT). No. of bitstreams: 1
GiselleCS_tese.pdf: 1424263 bytes, checksum: 0a3b291c39e9d1dfd7f82f5c1ef897a3 (MD5)
Previous issue date: 2008-06-13 / The present study has as objective to explaining about the origins of the mathematical logic. This has its beginning attributed to the autodidactic English mathematician George Boole (1815-1864), especially because his books The Mathematical Analysis of Logic (1847) and An Investigation of the Laws of Thought (1854) are recognized as the inaugural works of the referred branch. However, surprisingly, in the same time another mathematician called Augutus of Morgan (1806-1871) it also published a book, entitled Formal Logic (1847), in defense of the mathematic logic. Even so, times later on this same century, another work named Elements of Logic (1875) it appeared evidencing the Aristotelian logic with Richard Whately (1787-1863), considered the better Aristotelian logical of that time. This way, our research, permeated by the history of the mathematics, it intends to study the logic produced by these submerged personages in the golden age of the mathematics (19th century) to we compare the valid systems in referred period and we clarify the origins of the mathematical logic. For that we looked for to delineate the panorama historical wrapper of this study. We described, shortly, biographical considerations about these three representatives of the logic of the 19th century formed an alliance with the exhibition of their point of view as for the logic to the light of the works mentioned above. In this sense, we aspirated to present considerations about what effective Aristotelian?s logic existed in the period of Boole and De Morgan comparing it with the new emerging logic (the mathematical logic). Besides of this, before the textual analysis of the works mentioned above, we still looked for to confront the systems of Boole and De Morgan for we arrive to the reason because the Boole?s system was considered better and more efficient. Separate of this preponderance we longed to study the flaws verified in the logical system of Boole front to their contemporaries' production, verifying, for example, if they repeated or not. We concluded that the origins of the mathematical logic is in the works of logic of George Boole, because, in them, has the presentation of a new logic, matematizada for the laws of the thought similar to the one of the arithmetic, while De Morgan, in your work, expand the Aristotelian logic, but it was still arrested to her / O presente estudo tem como objetivo uma elucida??o das origens da l?gica matem?tica. Esta tem seu in?cio atribu?do ao matem?tico ingl?s autodidata George Boole (1815-1864), especialmente porque seus livros The Mathematical Analysis of Logic (1847) e An Investigation of the Laws of Thought (1854) s?o reconhecidos como as obras inaugurais do referido ramo. Contudo, curiosamente, na mesma ?poca um outro matem?tico chamado Augutus de Morgan (1806-1871) tamb?m lan?ou um livro, intitulado Formal Logic (1847), em defesa da matematiza??o da l?gica. Mesmo assim, tempos depois neste mesmo s?culo, uma outra obra nomeada Elements of Logic (1875) surgiu evidenciando a l?gica aristot?lica a partir da figura de Richard Whately (1787-1863), considerado o maior l?gico aristot?lico da ?poca. Desta forma, nossa pesquisa, permeada pela hist?ria da matem?tica, prop?e estudar a l?gica produzida por estes personagens imersos na idade ?urea da matem?tica (s?culo XIX) a fim de compararmos os sistemas vigentes no referido per?odo e clarificarmos as origens da l?gica matem?tica. Para isso buscamos delinear o panorama hist?rico envolt?rio deste estudo. Descrevemos, brevemente, considera??es biogr?ficas destes tr?s representantes da l?gica do s?culo XIX aliadas ? exposi??o de seus pontos de vista quanto ? l?gica ? luz das obras citadas acima. Neste sentido, aspiramos ainda apresentar considera??es acerca do que existia de l?gica aristot?lica vigente no per?odo de Boole e De Morgan comparando-a com a nova l?gica emergente (a l?gica matem?tica). Al?m disso, diante da an?lise textual das obras citadas acima, buscamos ainda confrontar os sistemas de Boole e De Morgan a fim de chegarmos ao motivo pelo o qual o de Boole ter sido considerado melhor e mais eficiente. ? parte desta preponder?ncia, almejamos estudar as falhas constatadas no sistema l?gico de Boole frente ? produ??o de seus contempor?neos, verificando, por exemplo, se elas se repetiram ou n?o. Conclu?mos que as origens da l?gica matem?tica residem nas obras de l?gica de George Boole, visto que, nelas, h? a apresenta??o de uma nova l?gica, matematizada pelas leis do pensamento an?logas ?s da aritm?tica, enquanto De Morgan conseguiu em seu trabalho expandir a l?gica aristot?lica, mas ainda esteve preso a ela
|
103 |
A integra??o do tutorial interativo TryLogic via IMS Learning Tools Interoperability: construindo uma infraestrutura para o ensino de L?gica atrav?s de estrat?gias de demonstra??o e refuta??o / The integration of the interactive tutorial TryLogic via IMS Learning Tools Interoperability: constructing a framework to teaching logic by proofs and refutationsTerrematte, Patrick Cesar Alves 03 June 2013 (has links)
Made available in DSpace on 2015-03-03T15:47:47Z (GMT). No. of bitstreams: 1
PatrickCAT_DISSERT.pdf: 4794202 bytes, checksum: 05088b21ff2be2b3c2ccec958e7e6b62 (MD5)
Previous issue date: 2013-06-03 / Logic courses represent a pedagogical challenge and the recorded number of cases of failures
and of discontinuity in them is often high. Amont other difficulties, students face
a cognitive overload to understand logical concepts in a relevant way. On that track,
computational tools for learning are resources that help both in alleviating the cognitive
overload scenarios and in allowing for the practical experimenting with theoretical
concepts. The present study proposes an interactive tutorial, namely the TryLogic, aimed
at teaching to solve logical conjectures either by proofs or refutations. The tool was
developed from the architecture of the tool TryOcaml, through support of the communication
of the web interface ProofWeb in accessing the proof assistant Coq. The goals of
TryLogic are: (1) presenting a set of lessons for applying heuristic strategies in solving
problems set in Propositional Logic; (2) stepwise organizing the exposition of concepts
related to Natural Deduction and to Propositional Semantics in sequential steps; (3) providing
interactive tasks to the students. The present study also aims at: presenting our
implementation of a formal system for refutation; describing the integration of our infrastructure
with the Virtual Learning Environment Moodle through the IMS Learning
Tools Interoperability specification; presenting the Conjecture Generator that works for
the tasks involving proving and refuting; and, finally to evaluate the learning experience
of Logic students through the application of the conjecture solving task associated to the
use of the TryLogic / A disciplina de L?gica representa um desa o tanto para docentes como para discentes, o
que em muitos casos resulta em reprova??es e desist?ncias. Dentre as dificuldades enfrentadas
pelos alunos est? a sobrecarga da capacidade cognitiva para compreender os conceitos
l?gicos de forma relevante. Neste sentido, as ferramentas computacionais de aprendizagem
s?o recursos que auxiliam a redu??o de cen?rios de sobrecarga cognitiva, como tamb?m
permitem a experi?ncia pr?tica de conceitos te?ricos. O presente trabalho prop?e uma
tutorial interativo chamado TryLogic, visando ao ensino da tarefa de Demonstra??o
ou Refuta??o (DxR) de conjecturas l?gicas. Trata-se de uma ferramenta desenvolvida a
partir da arquitetura do TryOcaml atrav?s do suporte de comunica??o da interface web
ProofWeb para acessar o assistente de demonstra??o de teoremas Coq. Os objetivos do
TryLogic s?o: (1) Apresentar um conjunto de li??es para aplicar estrat?gias heur?sticas
de an?lise de problemas em L?gica Proposicional; (2) Organizar em passo-a-passo a exposi
??o dos conte?dos de Dedu??o Natural e Sem?ntica Proposicional de forma sequencial;
e (3) Fornecer aos alunos tarefas interativas. O presente trabalho prop?e tamb?m apresentar
a nossa implementa??o de um sistema formal de refuta??o; descrever a integra??o
de nossa infraestrutura com o Ambiente Virtual de Aprendizagem Moodle atrav?s da especi
ca??o IMS Learning Tools Interoperability ; apresentar o Gerador de Conjecturas de
tarefas de Demonstra??o e Refuta??o e, por m, avaliar a experi?ncia da aprendizagem
de alunos de L?gica atrav?s da aplica??o da tarefa de DxR em associa??o ? utiliza??o do
TryLogic
|
104 |
Sobre os fundamentos de programação lógica paraconsistente / On the foundations of paraconsistent logic programmingRodrigues, Tarcísio Genaro 17 August 2018 (has links)
Orientador: Marcelo Esteban Coniglio / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas / Made available in DSpace on 2018-08-17T03:29:03Z (GMT). No. of bitstreams: 1
Rodrigues_TarcisioGenaro_M.pdf: 1141020 bytes, checksum: 59bb8a3ae7377c05cf6a8d8e6f7e45a5 (MD5)
Previous issue date: 2010 / Resumo: A Programação Lógica nasce da interação entre a Lógica e os fundamentos da Ciência da Computação: teorias de primeira ordem podem ser interpretadas como programas de computador. A Programação Lógica tem sido extensamente utilizada em ramos da Inteligência Artificial tais como Representação do Conhecimento e Raciocínio de Senso Comum. Esta aproximação deu origem a uma extensa pesquisa com a intenção de definir sistemas de Programação Lógica paraconsistentes, isto é, sistemas nos quais seja possível manipular informação contraditória. Porém, todas as abordagens existentes carecem de uma fundamentação lógica claramente definida, como a encontrada na programação lógica clássica. A questão básica é saber quais são as lógicas paraconsistentes subjacentes a estas abordagens. A presente dissertação tem como objetivo estabelecer uma fundamentação lógica e conceitual clara e sólida para o desenvolvimento de sistemas bem fundados de Programação Lógica Paraconsistente. Nesse sentido, este trabalho pode ser considerado como a primeira (e bem sucedida) etapa de um ambicioso programa de pesquisa. Uma das teses principais da presente dissertação é que as Lógicas da Inconsistência Formal (LFI's), que abrangem uma enorme família de lógicas paraconsistentes, proporcionam tal base lógica. Como primeiro passo rumo à definição de uma programação lógica genuinamente paraconsistente, demonstramos nesta dissertação uma versão simplificada do Teorema de Herbrand para uma LFI de primeira ordem. Tal teorema garante a existência, em princípio, de métodos de dedução automática para as lógicas (quantificadas) em que o teorema vale. Um pré-requisito fundamental para a definição da programação lógica é justamente a existência de métodos de dedução automática. Adicionalmente, para a demonstração do Teorema de Herbrand, são formuladas aqui duas LFI's quantificadas através de sequentes, e para uma delas demonstramos o teorema da eliminação do corte. Apresentamos também, como requisito indispensável para os resultados acima mencionados, uma nova prova de correção e completude para LFI's quantificadas na qual mostramos a necessidade de exigir o Lema da Substituição para a sua semântica / Abstract: Logic Programming arises from the interaction between Logic and the Foundations of Computer Science: first-order theories can be seen as computer programs. Logic Programming have been broadly used in some branches of Artificial Intelligence such as Knowledge Representation and Commonsense Reasoning. From this, a wide research activity has been developed in order to define paraconsistent Logic Programming systems, that is, systems in which it is possible to deal with contradictory information. However, no such existing approaches has a clear logical basis. The basic question is to know what are the paraconsistent logics underlying such approaches. The present dissertation aims to establish a clear and solid conceptual and logical basis for developing well-founded systems of Paraconsistent Logic Programming. In that sense, this text can be considered as the first (and successful) stage of an ambitious research programme. One of the main thesis of the present dissertation is that the Logics of Formal Inconsistency (LFI's), which encompasses a broad family of paraconsistent logics, provide such a logical basis. As a first step towards the definition of genuine paraconsistent logic programming we shown, in this dissertation, a simplified version of the Herbrand Theorem for a first-order LFI. Such theorem guarantees the existence, in principle, of automated deduction methods for the (quantified) logics in which the theorem holds, a fundamental prerequisite for the definition of logic programming over such logics. Additionally, in order to prove the Herbrand Theorem we introduce sequent calculi for two quantified LFI's, and cut-elimination is proved for one of the systems. We also present, as an indispensable requisite for the above mentioned results, a new proof of soundness and completeness for first-order LFI's in which we show the necessity of requiring the Substitution Lemma for the respective semantics / Mestrado / Filosofia / Mestre em Filosofia
|
105 |
Conectivos flexíveis : uma abordagem categorial às semânticas de traduções possíveisReis, Teofilo de Souza 23 July 2008 (has links)
Orientador: Marcelo Esteban Coniglio / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas / Made available in DSpace on 2018-08-11T21:55:18Z (GMT). No. of bitstreams: 1
Reis_TeofilodeSouza_M.pdf: 733611 bytes, checksum: 0e64d330d9e71079eddd94de91f141c2 (MD5)
Previous issue date: 2008 / Resumo: Neste trabalho apresentamos um novo formalismo de decomposição de
Lógicas, as Coberturas por Traduções Possíveis, ou simplesmente CTPs. As CTPs constituem uma versão formal das Semânticas de Traduções Possíveis, introduzidas por W. Carnielli em 1990. Mostramos como a adoção de um conceito mais geral de morfismo de assinaturas proposicionais (usando multifunções no lugar de funções) nos permite definir uma categoria Sig?, na qual os conectivos, ao serem traduzidos de uma assinatura para outra, gozam de grande flexibilidade. A partir de Sig?, contruímos a categoria Log? de lógicas tarskianas e morfismos (os quais são funções obtidas a partir de um morfismo de assinaturas, isto é, de uma multifunção). Estudamos algumas características de Sig? e Log?, afim de verificar que estas categorias podem de fato acomodar as construções que pretendemos apresentar. Mostramos como definir em Log? o conjunto de traduções possíveis de uma fórmula, e a partir disto definimos a noção de CTP para uma lógica L. Por fim, exibimos um exemplo concreto de utilização desta nova ferramenta, e discutimos brevemente as possíveis abordagens para uma continuação deste trabalho. / Abstract: We present a general study of a new formalism of decomposition of logics, the Possible- Translations Coverings (in short PTC 's) which constitute a formal version of Possible-Translations Semantics, introduced by W. Carnielli
in 1990. We show how the adoption of a more general notion of propositional
signatures morphism allows us to define a category Sig?, in which the connectives, when translated from a signature to another one, enjoy of
great flexibility. Essentially, Sig? -morphisms will be multifunctions instead
of functions. From Sig? we construct the category Log? of tarskian logics and morphisms between them (these .are functions obtained from signature morphisms, that is, from multifunctions) . We show how to define in Log? the
set of possible translations of a given formula, and we define the notion of
a PTC for a logic L. We analyze some properties of PTC 's and give concrete
examples of the above mentioned constructions. We conclude with a
discussion of the approaches to be used in a possible continuation of these
investigations. / Mestrado / Mestre em Filosofia
|
106 |
Aplicação de verificação formal em um sistema de segurança veicular / Application of formal verification in a vehicular safety systemSilva, Nayara de Souza 07 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-04-11T19:28:47Z
No. of bitstreams: 2
Dissertação - Nayara de Souza Silva - 2017.pdf: 2066646 bytes, checksum: 95e09b89bf69fe61277b09ce9f1812a6 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-12T14:32:03Z (GMT) No. of bitstreams: 2
Dissertação - Nayara de Souza Silva - 2017.pdf: 2066646 bytes, checksum: 95e09b89bf69fe61277b09ce9f1812a6 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-04-12T14:32:03Z (GMT). No. of bitstreams: 2
Dissertação - Nayara de Souza Silva - 2017.pdf: 2066646 bytes, checksum: 95e09b89bf69fe61277b09ce9f1812a6 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-07 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / The process of developing computer systems takes into account many stages, in which some
are more necessary than others, depending on the purpose of the application. The implementation
stage is always necessary, indisputably. Sometimes the requirements analysis and
testing phases are neglected. And, generally, the part of formal verification correctness is
intended for few applications. The use of model checkers has been exploited in the task of
validating a behavioral specification in its appropriate level of abstraction, notably specifications
validation of critical systems, especially when they involve the preservation of human
life, when the existence of errors entails huge financial loss or when deals with information
security. Therefore, it proposes to apply formal verification techniques in the validation of
the vehicular safety system Avoiding Doored System, considered as critical, in order to verify
if the implemented system faithfully meets the requirements for it proposed. For that,
it was used as a tool to verify its correctness the Specification and Verification System - PVS,
detailing and documenting all the steps employed in the process of specification and formal
verification.
K / O processo de desenvolvimento de sistemas computacionais leva em conta muitas etapas,
nos quais umas são tidas mais necessárias que outras, dependendo da finalidade da aplica-
ção. A etapa de implementação sempre é necessária, indiscutivelmente. Por vezes as fases
de análise de requisitos e de testes são negligenciadas. E, geralmente, a parte de verifica-
ção formal de corretude é destinada a poucas aplicações. O uso de verificadores de modelos
tem sido explorado na tarefa de validar uma especificação comportamental no seu nível
adequado de abstração, sobretudo, na validação de especificações de sistemas críticos, principalmente
quando estes envolvem a preservação da vida humana, quando a existência de
erros acarreta enorme prejuízo financeiro ou quando tratam com a segurança da informa-
ção. Diante disso, se propõe aplicar técnicas de verificação formal na validação do sistema
de segurança veicular Avoiding Doored System, tido como crítico, com o intuito de atestar
se o sistema implementado atende, fielmente, os requisitos para ele propostos. Para tal, foi
utilizada como ferramenta para a verificação de sua corretude o Specification and Verification
System - PVS, detalhando e documentando todas as etapas empregadas no processo de
especificação e verificação formal.
Pal
|
107 |
Mechanising knot TheoryPrathamesh, Turga Venkata Hanumantha January 2014 (has links) (PDF)
Mechanisation of Mathematics refers to use of computers to generate or check proofs in Mathematics. It involves translation of relevant mathematical theories from one system of logic to another, to render these theories implementable in a computer. This process is termed formalisation of mathematics. Two among the many ways of mechanising are:
1 Generating results using automated theorem provers.
2 Interactive theorem proving in a proof assistant which involves a combination of user intervention and automation.
In the first part of this thesis, we reformulate the question of equivalence of two Links in first order logic using braid groups. This is achieved by developing a set of axioms whose canonical model is the braid group on infinite strands B∞. This renders the problem of distinguishing knots and links, amenable to implementation in first order logic based automated theorem provers. We further state and prove results pertaining to models of braid axioms.
The second part of the thesis deals with formalising knot Theory in Higher Order Logic using the interactive proof assistant -Isabelle. We formulate equivalence of links in higher order logic. We obtain a construction of Kauffman bracket in the interactive proof assistant called Isabelle proof assistant. We further obtain a machine checked proof of invariance of Kauffman bracket.
|
108 |
Two Problems in Applied TopologyNathanael D Cox (11008509) 23 July 2021 (has links)
<div>In this thesis, we present two main results in applied topology.</div><div> In our first result, we describe an algorithm for computing a semi-algebraic description of the quotient map of a proper semi-algebraic equivalence relation given as input. The complexity of the algorithm is doubly exponential in terms of the size of the polynomials describing the semi-algebraic set and equivalence relation.</div><div> In our second result, we use the fact that homology groups of a simplicial complex are isomorphic to the space of harmonic chains of that complex to obtain a representative cycle for each homology class. We then establish stability results on the harmonic chain groups.</div>
|
109 |
Limited ink : interpreting and misinterpreting GÜdel's incompleteness theorem in legal theoryCrawley, Karen January 2006 (has links)
No description available.
|
110 |
Vzory myšlenek a čísel: dějiny matematické logiky v pozdně republikánské a raně socialstické Číně (1930-1960) / Patterns of Thought and Numbers: A History of Mathematical Logic in Late-Republican and Early-Socialist China (1930-1960)Vrhovski, Jan January 2022 (has links)
This PhD dissertation surveys the development of the concept and the academic discipline of mathematical logic in the transitional period between late Republican and early socialist China. Providing a contrastive analysis of the main developmental aspects of its conceptual variegations, its institutional life and research-related development, this dissertation focusses on the main continuities and discontinuities between these two important periods of its existence in the period of China's modernisation. The main analytical apparatus of this treatise is divided into two main parts. The first part outlines the main developmental milestones in research and teaching of mathematical logic in Chinese academic community in the late Republican period (1930-1949). Its main focus lies on the establishment of mathematical logic as a philosophical discipline in framework of the "Qinghua School of Logic" at National Qinghua University, on the one side, and the beginnings of Chinese mathematicians' research in mathematical logic in the early 1930s, on the other. The second part, on the other hand, closely examines the main three aspects of change which the idea and discipline of mathematical logic underwent in the first decade after the founding of the People's Republic (PRC): from its unique role in Chinese...
|
Page generated in 0.0203 seconds