• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biochemical analysis of MBD1

Lyst, Matthew James January 2009 (has links)
Methylation of cytosines within CpG dinucleotides is a feature of vertebrate DNA. The precise role of DNA methylation is unknown to date, although it has been implicated in several processes relating to transcriptional regulation. One approach to study DNA methylation is the characterization of proteins that bind specifically to methylated DNA. One such family of proteins is the methyl-CpG binding domain (MBD) containing family and MBD1 is a member of this family. MBD1 is implicated in transcriptional repression and various mechanisms by which it might bring about gene silencing have been proposed. These are mainly based on studies reporting interactions between MBD1 and various proteins that regulate chromatin structure. Also MBD1 function can be modified by PIAS proteins, which stimulate its conjugation to SUMO (small ubiquitinlike modifier).The original aim of this work was to address two questions about MBD1: (1) Does MBD1 form part of a stable complex with other factors, and if so, what are the identities of the other components? Purification of MBD1 revealed the presence of no stably bound interacting proteins. However, some evidence indicates MBD1 may interact with itself and form dimers, a finding which impacts on many aspects of the function of MBD1. Also a proteomics screen for transient interaction partners identified candidate binding partners for MBD1 and the related protein MeCP2, which may throw light on the function of these proteins. (2) Are there any activities which regulate MBD1 function by the removal of SUMO from this protein? No activities capable of removing SUMO from native MBD1 were found but it was demonstrated that this modification leads to the destabilization of MBD1 in vitro. The relevance of this finding in vivo is yet to be determined.
2

Role of epigenetic modifications in acute promyelocytic leukemia

Villa, Raffaella 10 December 2007 (has links)
Mi trabajo ha estado enfocado en la implicación de los diferentes mecanismos epigenéticos de PML-RARa en la inducción de la leucemia promielocítica aguda (APL).En particular yo estudié el rol de MBD1, un miembro de la conservada familia de proteinas capaces de unirse al DNA metilado, demostrando que desempeña un papel importante en la progresión de la leucemia. De hecho, mostré que MBD1 es recruida por PML-RARa a sus promotores diana a través de los mecanismos mediados por HDAC3, participando por tanto en la represión transcripcional. Además, investigué hasta donde la metilación de la H3K27 mediada por Polycomb contribuye a la tumorgénesis mediada por PML-RARa. Demostré que PML-RARa dirige al PRC2 hacia el locus del tumor supresor causando la metilación de la H3K27. Fue interesante ser capaz de mostrar que tanto la metilación del DNA como la de las histonas era requerida para mantener el aberrante silencio génico. Esto apuntaba hacia una intercomunicación entre estos diferentes marcadores epigenéticos contribuyendo a la patología molecular de la leucemia. Resumiendo, estos resultados nos proporcionan elementos nuevos para comprender los mecanismos moleculares esenciales en la tumorgénesis y progresión de la APL. / My work was focused on the involvement of different epigenetic mechanisms in PML-RARa-induced acute promyelocytic leukemia (APL). In particular, I studied the role of MBD1, a member of a conserved family of proteins able to bind methylated DNA, demonstrating that has an important function in leukemia progression. Indeed, I showed that MBD1 is recruited by PML-RARa to its target promoters through an HDAC3-mediated mechanism, thus participating in transcriptional repression.. Furthermore, I investigated how far Polycomb-mediated H3K27 methylation contributes to PML-RARa mediated tumorigenesis. I demonstrated that PML-RARa targets the PRC2 to tumor suppressor loci causing H3K27 methylation. Interestingly, I was able to show that both DNA and histone methylation are required to maintain PML-RARa aberrant gene silencing, pointing towards a crosstalk among these different epigenetic layers that contributes to the molecular pathology of leukemia. In summary these results provide new insights into the molecular mechanisms underlying APL tumorigenesis and progression.

Page generated in 0.0239 seconds