• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 523
  • 187
  • 122
  • 61
  • 44
  • 37
  • 24
  • 24
  • 23
  • 18
  • 13
  • 7
  • 5
  • 5
  • 3
  • Tagged with
  • 1325
  • 415
  • 246
  • 195
  • 165
  • 144
  • 144
  • 143
  • 120
  • 115
  • 97
  • 94
  • 73
  • 72
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Εξομοίωση σε Matlab και μελέτη λειτουργιών έξυπνου μικροφώνου

Κάρλος, Σταμάτης 04 December 2012 (has links)
Στην εργασία αυτή μελετήθηκε η γενική θεωρία των πυκνωτικών μικροφώνων που βρίσκουν εφαρμογή σε MEMS εφαρμογές της ακουστικής και αναλύθηκαν διεξοδικά δύο πυκνωτικά μικρόφωνα, ένα single-backplate και ένα dual-backplate, όσον αφορά τη γεωμετρία και τη συμπεριφορά τους. Επίσης, πραγματοποιήθηκε η υλοποίηση αυτών στο περιβάλλον του SIMULINK με τμηματικό τρόπο ανάλογα με τα φυσικά χαρακτηριστικά που προσομοιώνονται στο κάθε μοντέλο. Στη συνέχεια, προκειμένου να μετατοπιστεί ο θόρυβος αυτών πέρα από τις ακουστές συχνότητες, υλοποιήθηκαν δύο διαφορετικοί ΣΔ διαμορφωτές, ο μεν πρώτος βασισμένος στη βιβλοθήκη Delsig, ο δε δεύτερος στο περιβάλλον του SIMULINK. Και στις δύο περιπτώσεις μέσω κατάλληλου κώδικα γραμμένου στο περιβάλλον της MATLAB, οι εξόδοι των δύο μικροφώνων διαμορφώνονται κάθε φορά και από τους δύο ΣΔ διαμορφωτές, με σκοπό τη βελτίωση αυτών όσον αφορά τους δείκτες των SNR,THD και THD+NOISE. Σκοπός αυτής της εργασίας λοιπόν, είναι η εξακρίβωση της λειτουργίας των δύο ισοδύναμων μικροφώνων και ο σχολιασμός τόσο αυτής όσο και των επιδράσεων που προκαλούν στις εξόδους των δύο μικροφώνων η ΣΔ διαμόρφωση. / Στην εργασία αυτή μελετήθηκε η γενική θεωρία των πυκνωτικών μικροφώνων που βρίσκουν εφαρμογή σε MEMS εφαρμογές της ακουστικής και αναλύθηκαν διεξοδικά δύο πυκνωτικά μικρόφωνα, ένα single-backplate και ένα dual-backplate, όσον αφορά τη γεωμετρία και τη συμπεριφορά τους. Επίσης, πραγματοποιήθηκε η υλοποίηση αυτών στο περιβάλλον του SIMULINK με τμηματικό τρόπο ανάλογα με τα φυσικά χαρακτηριστικά που προσομοιώνονται στο κάθε μοντέλο. Στη συνέχεια, προκειμένου να μετατοπιστεί ο θόρυβος αυτών πέρα από τις ακουστές συχνότητες, υλοποιήθηκαν δύο διαφορετικοί ΣΔ διαμορφωτές, ο μεν πρώτος βασισμένος στη βιβλοθήκη Delsig, ο δε δεύτερος στο περιβάλλον του SIMULINK. Και στις δύο περιπτώσεις μέσω κατάλληλου κώδικα γραμμένου στο περιβάλλον της MATLAB, οι εξόδοι των δύο μικροφώνων διαμορφώνονται κάθε φορά και από τους δύο ΣΔ διαμορφωτές, με σκοπό τη βελτίωση αυτών όσον αφορά τους δείκτες των SNR,THD και THD+NOISE. Σκοπός αυτής της εργασίας λοιπόν, είναι η εξακρίβωση της λειτουργίας των δύο ισοδύναμων μικροφώνων και ο σχολιασμός τόσο αυτής όσο και των επιδράσεων που προκαλούν στις εξόδους των δύο μικροφώνων η ΣΔ διαμόρφωση.
172

Building a novel nanofabrication system using MEMS

Han, Han 07 December 2016 (has links)
Micro-electromechanical systems (MEMS) are electrically controlled micro-machines which have been widely used in both industrial applications and scientific research. This technology allows us to use macro-machines to build micro-machines (MEMS) and then use micro-machines to fabricate even smaller structures, namely nano-structures. In this thesis, the concept of Fab on a Chip will be discussed where we construct a palette of MEMS-based micron scale tools including lithography tools, novel atomic deposition sources, atomic mass sensors, thermometers, heaters, shutters and interconnect technologies that allow us to precisely fabricate nanoscale structures and conduct in-situ measurements using these micron scale devices. Such MEMS devices form a novel microscopic nanofabrication system that can be integrated into a single silicon chip. Due to the small dimension of MEMS, fabrication specifications including heat generation, patterning resolution and film deposition precision outperform traditional fabrication in many ways. It will be shown that one gains many advantages by doing nano-lithography and physical vapor deposition at the micron scale. As an application, I will showcase the power of the technique by discussing how we use Fab on a Chip to conduct quench condensation of superconducting Pb thin films where we are able to gently place atoms upon a surface, creating a uniform, disordered amorphous film and precisely tune the superconducting properties. This shows how the new set of techniques for nanofabrication will open up an unexplored regime for the study of the physics of devices and structures with small numbers of atoms.
173

3D System-On-Package (SoP) Signal Generator to Control MEMS Movable Microelectrode Arrays

January 2012 (has links)
abstract: Microelectrodes have been used as the neural interface to record brain's neural activities. Most of these electrodes are fixed positioned. Neural signal normally degrades over time due to the body immune response and brain micromotion that move the neurons away from the microelectrode. MEMS technology under SUMMiT VTM processes has developed miniaturized version of moveable microelectrodes that have the ability to recover the neural signal degradation by searching new cluster of neurons. To move the MEMS microelectrode a combination of four voltage waveforms must be applied to four thermally actuated microactuators. Previous design has used OmneticTM interconnect to transfer the waveforms from the external signal generators to the MEMS device. Unfortunately, the mechanism to attach and detach the OmneticTM interconnect introduce mechanical stress into the brain tissue that often caused raptures in the blood vessel. The goal of this project is to create an integrated System-On-Package Signal Generator that can be implanted on the brain of a rodent. A wireless system and a microcontroller are integrated together with the signal generators. The integrated system can be used to generate a series of voltage waveforms that can be customized to drive an array of MEMS movable microelectrodes when a triggered signal is received wirelessly. 3D stacking technique has been used to develop this Integrated System. 3D stacks lead to several favorable factors, such as (a) reduction in the power consumption of the system, (b) reduction in the overall form-factor of the package, and (c) significant reduction the weight of the package. There are a few challenges that must be overcome in this project, such as a commercially available microcontroller normally have an output voltage of 3.3 V to 5.5 V; however, a voltage of 7 - 8V is required to move the MEMS movable microelectrodes. To acquire higher density neural recording, more number of microelectrodes are needed. In this project, SoP Signal Generator is design to drive independently 3 moveable microelectrodes. Therefore, 12 voltage waveform are required. . However, the use of 12 signal generators is not a workable option since the system will be significantly large. This brings us to the other challenge, the limiting size of the rodent brain. Due to this factor, the SoP Signal Generator has to be deisgned to be able to fit without causing much pressure to the rodent's brain. For the first challenge, which is the limited output voltage of 3.3V on the microcontroller, the RC555 timers are used as an amplifier in addition to generating the signals. Demultiplexers have been for the next challenge, which is the need of 24 waveforms to drive 3 electrodes. For each waveform, 1 demultiplexer is used, making a total of 4 demultiplexers used in the entire system, which is a significant improvement from using 12 signal generators. The last challenge can be approached using 3D system stacking technique as mentioned above. The research aims of this project can be described as follows: (1) the testing and realization of the system part, and the designing of the system in a PCB level, (2) implementing and testing the SoP Signal Generator with the MEMS movable microelectrodes, The final outcome of this project can be used not only for neural applications, but also for more general applications that requires customized signal generations and wireless data transmission. / Dissertation/Thesis / M.S. Electrical Engineering 2012
174

Compensation de la fréquence des résonateurs MEMS pour des applications de référence temps / Control of the frequency of the electromechanical resonators MEMS

Civet, Yoan 16 May 2012 (has links)
A l’heure actuelle, les Micro-Electro-Mechanical-Systems (MEMS) sont devenusincontournables dans les produits technologiques quotidiens. De par leur taille,leurs performances et leur intégration, les microsystèmes résonants se sontinscrits dans la diversification de la fameuse Loi de Moore. Cependant les applications detype base de temps demeurent le segment de marché où les MEMS ne parviennent pas às’imposer durablement. En effet, grâce à une stabilité en fréquence de quelques parties parmillions, l’oscillateur à base de résonateur en Quartz reste le produit numéro 1 d’unmarché estimé à dix-sept milliards de dollars.Etant donné le lien entre la fréquence d’un résonateur silicium MEMS et ses dimensionsintrinsèques, les différentes étapes de fabrication induisent un décalage de cette fréquencepar rapport à la valeur visée. C’est donc cet écart que nous tenterons d’adresser. Dans cecontexte, nous avons proposé une nouvelle méthode de correction à l’échelle du substrat.Cette méthode consiste en une ultime étape technologique, après une première mesureélectrique des dispositifs qui permet de quantifier l’erreur, à ramener la fréquence à lavaleur souhaitée par un ajout localisé de matière. Nous montrerons qu’il est possible, enune seule étape, de réduire la Gaussienne représentative de la variation de la fréquence ausein du substrat à quelques parties par million. Pour cela, nous avons développé deuxmodèles physiques qui permettent de quantifier la correction pour atteindre les objectifs.En parallèle, nous avons mis en place un processus de fabrication compatible avec la filièreCMOS avec seulement dix-sept étapes et deux masques photolithographiques dont le pointde départ est un substrat de type SOI. Ce procédé a permis la fabrication de résonateur àmodes de flexion et ondes de volume, dont les performances intrinsèques (f et Q)permettent de concurrencer les résonateurs Quartz. Enfin, nous avons validé notre conceptet nos modèles physiques par des caractérisations électriques de nos dispositifs.L’analyse des résultats nous a permis de dresser une liste des pistes d’amélioration pourétablir une voie vers l’industrialisation durable des résonateurs MEMS. Dans un premiertemps, une attention toute particulière se portera sur le choix du substrat et la technologieutilisée pour garantir des performances optimales. La méthode de correction nécessite unemesure électrique intermédiaire, cette étape doit être précisée et il faudra s’assurer qu’ellen’augmente pas le coût global de la fonction. Bien que discutés, le packaging du MEMS etl’intégration seront des points à étudier, tout particulièrement pour conserver lesspécifications du résonateur lui-même. / Present, Micro-Electro-Mechanical-Systems (MEMS) have become essential ineveryday technology products. Thanks to their size, performances andintegration, resonant microsystems have been enrolled in the diversification ofthe famous Moore's Law. However, the time based applications remain the market segmentwhere MEMS are unable to settle permanently. Indeed, the oscillator-based Quartz is thenumber one product on the market, a market estimated at $ 17 billions, thanks to afrequency stability of a few parts per million over its lifetime.Given the link between the frequency of a MEMS resonator and its intrinsic dimensions,the various manufacturing steps induce a shift of this frequency from the target value. Wewill try to address this difference.In this context, we proposed a new method of correction across the wafer. This methodconsists of a final technological step after a first electrical measurement to quantify theshift. We will show that it is possible in one step, to reduce the Gaussian representing thefrequency variation within the wafer to a few parts per million. From this perspective, wehave developed two physical models that quantify the correction to achieve the objectives.Moreover, we set up a manufacturing process CMOS compatible with only 17 steps and2 photolithographic masks starting with a SOI wafer. This process has enabled theproduction of flexural mode resonators and bulk mode resonators, whose intrinsicperformances (f, Q) can compete with Quartz. Finally, we validated our concept and ourphysical models thanks to electrical characterization of our devices.Analysis of the results allowed us to develop a list of possible improvements to establish aroute to the industrialization of MEMS resonators. First, special attention will be focusedon the choice of substrate and the technology used to ensure perfect performances.Correction method requires a preliminary electrical measurement, this step must bedetailed and one have to ensure that it does not increase the overall cost. Although partiallystudied, the packaging of MEMS and integration are the points to consider in particularkeeping the specifications of the resonator itself.
175

Conception et fabrication de micro-résonateurs pour la réalisation d'une puce neuromorphique

Mejaouri, Salim January 2018 (has links)
La miniaturisation des transistors ayant atteint ses limites, des technologies alternatives capables de traiter les données sont aujourd’hui beaucoup étudiées. Dans ce contexte, nous développons une architecture de réseau de neurones mécaniques, capable de résoudre effi- cacement des problèmes non-triviaux comme la classification ou la prédiction de fonctions chaotiques. Cette architecture est inspirée des travaux sur les réseaux de neurones récur- rents (RNN), et plus particulièrement du reservoir computing. Le dispositif est un réseau d’oscillateurs MEMS anharmoniques, lui permettant ainsi d’être compact et de consom- mer peu d’énergie. Les poutres en silicium bi-encastrées ont été choisies pour réaliser le dispositif, sachant qu’elles ont été largement étudiées et sont simples à implémenter. Nous présentons ici le travail expérimental sur les MEMS non linéaires qui seront utilisés par la suite pour réaliser le dispositif. Des simulations numériques du réseau ont permis, dans un premier temps, d’identifier les requis sur la dynamique des résonateurs. Ceux-ci ont été par la suite conçus de manière à répondre le mieux possible à ces requis. Un couplage méca- nique efficace a été élaboré pour relier chacun des oscillateurs. Afin de prédire précisément le comportement des résonateurs couplés dans le régime linéaire et non linéaire, des ana- lyses par éléments finis ont été réalisées. Un procédé de micro fabrication rapide et simple a été développé. Enfin, les structures ont été caractérisées optiquement et électriquement. Les résultats expérimentaux sont en accord avec les simulations ce qui suggère que notre approche convient à la conception et à la fabrication d’un dispositif neuromorphique.
176

Diffraction-Based Optical Switching with MEMS

Blanche, Pierre-Alexandre, LaComb, Lloyd, Wang, Youmin, Wu, Ming 19 April 2017 (has links)
We are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports. We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate.
177

Improvement of longevity and signal quality in implantable neural recording systems

Zargaran Yazd, Arash 05 1900 (has links)
Application of neural prostheses in today's medicine successfully helps patients to increase their activities of daily life and participate in social activities again. These implantable microsystems provide an interface to the nervous system, giving cellular resolution to physiological processes unattainable today with non-invasive methods. The latest developments in genetic engineering, nanotechnologies and materials science have paved the way for these complex systems to interface the human nervous system. The ideal system for neural signal recording would be a fully implantable device which is capable of amplifying the neural signals and transmitting them to the outside world while sustaining a long-term and accurate performance, therefore different sciences from neurosciences, biology, electrical engineering and computer science have to interact and discuss the synergies to develop a practical system which can be used in daily medicine practice. This work investigates the main building blocks necessary to improve the quality of acquired signal from the micro-electronics and MEMS perspectives. While all of these components will be ultimately embedded in a fully implantable recording probe, each of them addresses and deals with a specific obstacle in the neural signal recording path. Specifically we present a low-voltage low-noise low-power CMOS amplifier particularly designed for neural recording applications. This is done by surveying a number of designs and evaluating each design against the requirements for a neural recording system such as power dissipation and noise, and then choosing the most suitable topology for design and implementation of a fully implantable system. In addition a surface modification method is investigated to improve the sacrificial properties and biocompatibility of probe in order to extend the implant life and enhance the signal quality. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
178

Electrical Stimulation Based Statistical Calibration Model For MEMS Accelerometer And Other Sensors

January 2020 (has links)
abstract: Micro Electro Mechanical Systems (MEMS) based accelerometers are one of the most commonly used sensors out there. They are used in devices such as, airbags, smartphones, airplanes, and many more. Although they are very accurate, they degrade with time or get offset due to some damage. To fix this, they must be calibrated again using physical calibration technique, which is an expensive process to conduct. However, these sensors can also be calibrated infield by applying an on-chip electrical stimulus to the sensor. Electrical stimulus-based calibration could bring the cost of testing and calibration significantly down as compared to factory testing. In this thesis, simulations are presented to formulate a statistical prediction model based on an electrical stimulus. Results from two different approaches of electrical calibration have been discussed. A prediction model with a root mean square error of 1% has been presented in this work. Experiments were conducted on commercially available accelerometers to test the techniques used for simulations. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2020
179

Development of a Multi-User Polyimide-MEMS Fabrication Process and its Application to MicroHotplates

Lizardo, Ernesto B. 08 May 2013 (has links)
Micro-electro-mechanical systems (MEMS) became possible thanks to the silicon based technology used to fabricate integrated circuits. Originally, MEMS fabrication was limited to silicon based techniques and materials, but the expansion of MEMS applications brought the need of a wider catalog of materials, including polymers, now being used to fabricate MEMS. Polyimide is a very attractive polymer for MEMS fabrication due to its high temperature stability compared to other polymers, low coefficient of thermal expansion, low film stress and low cost. The goal of this thesis is to expand the Polyimide usage as structural material for MEMS by the development of a multi-user fabrication process for the integration of this polymer along with multiple metal layers on a silicon substrate. The process also integrates amorphous silicon as sacrificial layer to create free-standing structures. Dry etching is used to release the devices and avoid stiction phenomena. The developed process is used to fabricate platforms for micro-hotplate gas sensors. The fabrication steps for the platforms are described in detail, explaining the process specifics and capabilities. An initial testing of the micro-hotplate is presented. As the process was also used as educational tool, some designs made by students and fabricated with the Polyimide-MEMS process are also presented.
180

INVESTIGATION OF THE STATIC AND DYNAMIC BEHAVIOR OF A MICRO MIRROR

Ilyas, Saad 11 1900 (has links)
This dissertation presents the modeling, design, fabrication, and experimental testing of a polyimide based micro mirror for applications in MEMS logic devices based on its static behavior and in MEMS resonators using mixed frequency excitation. First, a universal MEMS logic device that can perform all the logic operations, such as INVERTER, AND, NAND, NOR, and OR gates using one physical structure, within an operating range of 0-10 volts. It can also perform XOR and XNOR with one access inverter using the same structure with different electrical interconnects. We discuss the fabrication, simulations and experimental results demonstrating these logic operations on a polyimide micro mirror. The device is capable of performing the switching operation with a frequency of 1 kHz, a switching time of 8.2 μs, and an electrical lifetime of 8000 cycles. Second, this study presents an experimental and theoretical investigation of a micro mirror under a mixed frequency signal composed of two harmonic AC sources. The experimental and theoretical dynamics are explored via frequency sweeps in the desired neighborhoods. One frequency is fixed while the other frequency is swept through a wide 5 range to study the dynamic responses of the micro mirror. These responses are studied under different frequencies and different input voltages. The results show interesting dynamics, where the system exhibits primary resonance, and combination resonances of additive and subtractive type. The mixed excitation is demonstrated as a way to increase the bandwidth of the resonator near primary resonance, which can be promising for resonant sensing applications in the effort to increase the signal-noise ratio over extended frequency range. It can be promising for energy harvesting as well; since it provides the system with resonances of very high amplitudes at very low frequencies regardless of what is the natural frequency of the system, however this still needs further investigation.

Page generated in 0.0312 seconds