• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 525
  • 187
  • 122
  • 61
  • 44
  • 37
  • 24
  • 24
  • 23
  • 18
  • 13
  • 7
  • 6
  • 5
  • 3
  • Tagged with
  • 1328
  • 416
  • 246
  • 196
  • 166
  • 145
  • 144
  • 143
  • 120
  • 115
  • 97
  • 94
  • 73
  • 72
  • 70
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

An Experimental Optical Three-axis Tactile Sensor for Micro-Robots

Ohka, Masahiro, Mitsuya, Yasunaga, Higashioka, Isamu, Kabeshita, Hisanori 07 1900 (has links)
No description available.
312

Diseño y fabricación de sistemas micro/nano electromecánicos integrados monolíticamente para aplicaciones de sensores de masa y sensores biológicos con palancas como elementos transductores

Villarroya Gaudó, María 21 July 2005 (has links)
El objetivo de esta tesis es la implementación de sensores de alta resolución, formados por sistemas micro/nano electromecánicos integrados monolíticamente, basados en palanca como elemento transductor y utilizando para la fabricación tecnologías de silicio. En concreto, se determinará la tecnología de fabricación óptima para la implementación de sensores basados en palancas, para aplicaciones en aire o vacio y líquido. Se establecerán las técnicas de detección y excitación adecuadas para los sensores basados en palancas. Y se realiza la compatibilización de la tecnología de fabricación de sensores con la tecnología CMOS, de forma que se consiga la integración monolítica del sistema.Para ello, se fabrican tres demostradores distintos, dos de ellos sensores de masa formados por palancas resonantes y un tercer sistema capaz de trabajar en medio líquido para detección electroquímica. En el primer demostrador se fabrica un sensor de masa formado por una matriz de palancas de polisilicio integrado monolíticamente con la circuitería de lectura. Para ello se utiliza como capa estructural uno de los niveles de polisilicio de la tecnología CMOS utilizada (tecnología CMOS CNM25 2P, 2M con dos niveles de metal y dos niveles de polisilicio). Se han diseñado matrices de cuatro y ocho palancas que permiten realizar medidas multiplexadas de cada una de las palancas independientemente y medidas diferenciales. De forma que por un lado se aumenta la versatilidad del sistema y al realizar medidas diferenciales mejora la resolución. Durante el proceso CMOS se definen las áreas de fabricación y como post-proceso se definen los transductores mecánicos. Tras caracterización eléctrica de los sistemas, de este demostrador se concluye que la integración monolítica es posible y se dispone de un sistema versátil, con resolución en masa inferior a los 40 ag/Hz. El segundo demostrador consiste en un sensor de masa formado por palancas resonantes de silicio cristalino. Para utilizar silicio cristalino como capa estructural se desarrolla una nueva tecnología, a partir de sustratos SOI, que permite definir regiones para fabricación de la circuitería CMOS y regiones con estructura SOI para la implementación de los transductores. Una vez definida la tecnología, se implementan sensores de masa resonantes (como en el primer demostrador) con mejores características de la capa estructural. Se ha probado el funcionamiento de dichos sensores con una resolución máxima en masa de 7 ag/Hz. La tecnología desarrollada permite la fabricación de sistemas MEMS/NEMS integrados monolíticamente que utilizan silicio cristalino como capa estructural. Por ultimo se ha desarrollado un tercer dispositivo, que permite trabajar en medio líquido. Se utiliza como elemento transductor una palanca de silicio cristalino. Para detectar la deflexión de la palanca (provocada por estrés superficial debido al depósito de moléculas) se miden variaciones de corriente electroquímica entre la palanca y un electrodo muy próximo a ella dentro de un bipotenciostato. Es preciso que la separación entre dos electrodos sea inferior a los 100 nm, para poder medir esta corriente. Definir estas separaciones supone un reto tecnológico importante, dado que se trata de definir cortes en silicio de una micra de grosor, con anchura inferior a los 100 nm. Se utilizan técnicas de litografía con resolución nanométrica (con microscopio de fuerzas atómicas, AFM y haz focalizado de iones, FIB) combinadas con grabado seco por iones reactivos (RIE) y ataque directo mediante FIB. Se han conseguido los cortes requeridos y se demuestra el funcionamiento del dispositivo. / The objective of this thesis work is to implement high resolution sensors, formed by micro/nano electromechanical systems integrated monolithically, using cantilevers as transducer and silicon technologies for the fabrication. In particular, the optimal fabrication technology is determined to implement cantilever based sensors for air or vacuum applications and liquid ones. Detection and excitation optimal techniques for cantilever based systems are established. The compatibilization between the sensors fabrication and the CMOS technology is obtained, to achieve the on chip monolithic system.To achieve these objectives, three different demonstrators are fabricated. Two of them are mass sensors formed by resonant cantilevers; the third one is a system able to work in liquid with electrochemical detection. The first demonstrator is a mass sensor formed by a polysilicon cantilevers array integrated monolithically with the readout circuitry. As structural layer, one of the polysilicon layers of the CMOS technology is used (this technology is CMOS CNM25 2P, 2M with two polysilicon layers and to metal ones). Arrays of four and eight cantilevers have been designed, these designs allow multiplexed measures for individual cantilevers and differential measures. On one hand the versatility of the system is increased, by the other differential measures increase the sensor resolution. During CMOS process, fabrication areas are defined; transducers are defined as a post process. After electrical characterization of the system, it can be conclude that the monolithic integration is possible, and it is disposed a versatile system, with mass resolution lower than 40 ag/Hz.A mass sensor formed by resonant cantilevers of crystalline silicon forms the second demonstrator. To use crystalline silicon as structural layer a new technology is developed: from SOI (Silicon on Insulator) substrates, different regions are defined to implement the CMOS on bulk silicon and regions with SOI structure to the transducers. Once, the technology is defined, mass sensors are implemented (like in first demonstrator) increasing the characteristics of the structural layer. IT has been proved the working way of these sensors, with a mass resolution of 7 ag/Hz. The developed technology allows a new platform for MEMS/NEMS fabrications, by monolithic integration and using crystalline silicon as structural layer. Finally, a third device has been defined, which allows to work in liquid. As transducer a crystalline silicon cantilever is used. The deflexion of the cantilever (caused by superficial stress due to molecules adherence) is measured by variations in the electrochemical current between the cantilever and an electrode place close to it, inside a bipotenciostat system. The separation between both electrodes must be smaller than 100nm, to measure this current. The definition of this gaps suppose an important technological issue, due that gaps have to be defined in one micron thick silicon, with a wide smaller than 100 nm. Lithography techniques with nanometric resolutions (atomic force microscope, AFM, and focus ion beam, FIB) combined with reactive ion etching (RIE) are used, together with direct etching with FIB.
313

Multi-Port RF MEMS Switches and Switch Matrices

Daneshmand, Mojgan January 2006 (has links)
Microwave and millimeter wave switch matrices are essential components in telecommunication systems. These matrices enhance satellite capacity by providing full and flexible interconnectivity between the received and transmitted signals and facilitate optimum utilization of system bandwidth. Waveguide and semiconductor technology are two prominent candidates for the realizing such types of switch matrices. Waveguide switches are dominant in high frequency applications of 100 ? 200 GHz and in high power satellite communication. However, their heavy and bulky profile reinforces the need for a replacement. In some applications, semiconductor switches are an alternative to mechanical waveguide switches and utilize PIN diodes to create the ON and OFF states. Although, these switches are small in size, they exhibit poor RF performance and low power handling. <br /><br /> RF MEMS technology is a good candidate to replace the conventional switches and to realize an entire switch matrix. This technology has a great potential to offer superior RF performance with miniaturized dimensions. Because of the advantages of MEMS technology numerous research studies have been devoted to develop RF MEMS switches. However, they are mostly concentrated on Single-Pole Single-Throw (SPST) configurations and very limited work has been performed on MEMS multi-port switches and switch matrices. Here, this research has been dedicated on developing multi-port RF MEMS switches and amenable interconnect networks for switch matrix applications. To explore the topic, three tasks are considered: planar (2D) multi-port RF MEMS switches, 3D multi-port RF MEMS switches, and RF MEMS switch matrix integration. <br /><br /> One key objective of this thesis is to investigate novel configurations for planar multi-port (SPNT), C-type, and R-type switches. Such switches represent the basic building blocks of switch matrices operating at microwave frequencies. An in house monolithic fabrication process dedicated to electrostatic multi-port RF MEMS switches is developed and fine tuned. The measurement results exhibit an excellent RF performance verifying the concept. Also, thermally actuated multi-port switches for satellite applications are designed and analyzed. The switch performance at room condition as well as at a very low temperature of 77K degrees (to resemble the harsh environment of satellite applications) is measured and discussed in detail. <br /><br /> For the first time, a new category of 3D RF MEMS switches is introduced to the MEMS community. These switches are not only extremely useful for high power applications but also have a great potential for high frequencies and millimetre-waves. The concept is based on the integration of vertically actuated MEMS actuators inside 3D transmission lines such as waveguides and coaxial lines. An SPST and C-type switches based on the integration of rotary thermal and electrostatic actuators are designed and realized. The concept is verified for the frequencies up to 30GHz with measured results. A high power test analysis and measurement data indicates no major change in performance as high as 13W. <br /><br /> The monolithic integration of the RF MEMS switch matrix involves the design and optimization of a unique interconnect network which is amenable to the MEMS fabrication process. While the switches and interconnect lines are fabricated on the front side, taking advantage of the back side patterning provides a high isolation for cross over junctions. Two different techniques are adopted to optimize the interconnect network. They are based on vertical three-via interconnects and electromagnetically coupled junctions. The data illustrates that for a return loss of less than -20dB up to 30GHz, an isolation of better than 40dB is obtained. This technique not only eliminates the need for expensive multilayer manufacturing process such as Low Temperature Co-fired Ceramics (LTCC) but also provides a unique approach to fabricate the entire switch matrix monolithically.
314

Design, Optimization and Fabrication of Amorphous Silicon Tunable RF MEMS Inductors and Transformers

Chang, Stella January 2006 (has links)
High performance inductors are playing an increasing role in modern communication systems. Despite the superior performance offered by discrete components, parasitic capacitances from bond pads, board traces and packaging leads reduce the high frequency performance and contribute to the urgency of an integrated solution. Embedded inductors have the potential for significant increase in reliability and performance of the IC. Due to the driving force of CMOS integration and low costs of silicon-based IC fabrication, these inductors lie on a low resistivity silicon substrate, which is a major source of energy loss and limits the frequency response. Therefore, the quality factor of inductors fabricated on silicon continues to be low. The research presented in this thesis investigates amorphous Si and porous Si to improve the resistivity of Si substrates and explores amorphous Si as a structural material for low temperature MEMS fabrication. Planar inductors are built-on undoped amorphous Si in a novel application and a 56% increase in quality factor was measured. Planar inductors are also built-on a porous Si and amorphous Si bilayer and showed 47% improvement. Amorphous Si is also proposed as a low temperature alternative to polysilicon for MEMS devices. Tunable RF MEMS inductors and transformers are fabricated based on an amorphous Si and aluminum bimorph coil that is suspended and warps in a controllable manner. The 3-D displacement is accurately predicted by thermomechanical simulations. The tuning of the devices is achieved by applying a DC voltage and due to joule heating the air gap can be adjusted. A tunable inductor with a 32% tuning range from 5.6 to 8.2 nH and a peak Q of 15 was measured. A transformer with a suspended coil demonstrated a 24% tuning range of the mutual coupling between two stacked windings. The main limitation posed by post-CMOS integration is a strict thermal budget which cannot exceed a critical temperature where impurities can diffuse and materials properties can change. The research carried out in this work accommodates this temperature restriction by limiting the RF fabrication processes to 150°C to facilitate system integration on silicon.
315

Integrated Fluorescence Detection System for Lab on a Chip Devices

Mo, Keith January 2007 (has links)
This thesis focuses on the design of a versatile, portable, and cost-effective fluorescence detection system for LOC devices. Components that are widely available are used, such as LEDs for excitation and a microcontroller for processing. In addition, a photoresistor is tested for the feasibility of being used as a fluorescence detector, instead of the more commonly used photomultiplier tubes. The device also focuses on upgradeability and versatility, meaning that most of the major components can be replaced as long as power requirements remain unaffected. This allows for future additions to the device once they are available, as well as giving the user the power to choose which add-ons are needed since not all users may have the same requirements. The performance of the device after testing with fluorescein dyes and stained yeast cells indicate that it is capable of executing simple tasks, such as determining the presence and concentration of an analyte if given a sufficient amount. It also provided similar readings to commercial fluorescence analysers, which proves its ability to function as a fluorescence detector device. The thesis also proposes a MEMS diffraction grating that can be used for wavelength tuning. By being able to selectively measure across a range of wavelengths, the capability of the device is increased. Examples include being able to detect multiple fluorescent emissions, which will complement the multicoloured excitation LED nicely. In addition, the device will not be limited to a predetermined set of filters. This effectively allows more fluorescent dyes to be used with the device since any wavelength in the visible range can be selectively filtered for. Simulations of the proposed diffraction grating were performed in ANSYS to confirm the validity of the calculated values. In addition, tests were performed on a slide fabricated with diffraction gratings using values as close to the calculated values as possible. All of the results indicate that there is great promise in the proposed diffraction grating design and that it should be further investigated.
316

Low Temperature RF MEMS Inductors Using Porous Anodic Alumina

Oogarah, Tania Brinda January 2008 (has links)
In today’s communication devices, the need for high performance inductors is increasing as they are extensively used in RF integrated circuits (RFICs). This need is even more pronounced for variable inductors as they are widely required in tunable filters, voltage controlled amplifiers (VCO) and low noise amplifiers (LNA). For RFICs, the main tuning elements are solid state varactors that are used in conjunction with invariable inductors. However, they have limited linearity, high resistive losses, and low self resonant frequencies. This emphasizes the need for developing another tuning element that can be fabricated monolithically with ICs and can offer high range of tuning. Due to the ease of CMOS integration and low cost silicon based IC fabrication, the inductors currently used are a major source of energy loss, therefore driving the overall quality factor and performance of the chip down. During the last decade there has been an increase in research in RF MicroelectroMechanical Systems (RF MEMS) to develop high quality on chip tunable RF components. MEMS capacitors were initially proposed to substitute the existing varactors, however they can not be easily integrated on top of CMOS circuits. RF MEMS variable inductors have recently attracted attention as a better alternative. The research presented here explores using porous anodic alumina (PAA) in CMOS and MEMS fabrication. Due to its low cost and low temperature processing, PAA is an excellent candidate for silicon system integration. At first, PAA is explored as an isolation layer between the inductor and the lossy silicon substrate. Simulations show that although the dielectric constant of the PAA is tunable, the stress produced by the required thicker layers is problematic. Nevertheless, the use of PAA as a MEMS material shows much more promise. Tunable RF MEMS inductors based on bimorph sandwich layer of aluminum PAA and aluminum are fabricated and tested. A tuning range of 31% is achieved for an inductance variation of 5.8 nH to 7.6 nH at 3 GHz. To further improve the Q, bimorph layers of gold and PAA are fabricated on Alumina substrates. A lower tuning range is produced; however the quality factor performance is greatly improved. A peak Q of over 30 with a demonstrated 3% tuning range is presented. Depending on the need for either high performance or tunability, two types of tunable RF MEMS inductors are presented. Although PAA shows promise as a mechanical material for MEMS, the processing parameters (mainly stress and loss tangent) need to be improved if used as an isolation layer. To our knowledge, this is the first time this material has been proposed and successfully used as a structural material for MEMS devices and CMOS processes.
317

Development Of a Novel Multi-disciplinary Design Optimization Scheme For Micro Compliant Devices

Mehrnaz, Motiee 08 September 2008 (has links)
The focus of this research is on the development of a novel multi-disciplinary design optimization scheme for micro-compliant devices. Topology optimization is a powerful tool that can address the need for a systematic method to design MEMS. It is expected that systematic design methods will make the design of micro devices transparent to the user and thus spur their use. Although topology optimization of MEMS devices with embedded actuation has received a great deal of attention among researchers recently, there is not a significant amount of literature available on the subject. The limited literature available addresses multi-physics topology optimization, which employs the homogenization method. However, the products of this method inherit the drawbacks of homogenized material discretization, including checkerboard pattern, gray-scale material and narrow flexural hinges in the optimum solution. In this thesis, a new topology optimization scheme is introduced that addresses the specific needs of MEMS domain. A new discretization approach with frame-ground structure is introduced. This approach offers significant conceptual and practical advantages to the compliant MEMS optimization problem, including compatibility with MEMS fabrication processes. The design spaces of compliant mechanisms are non-convex and it is critical to employ an algorithm capable of converging to the global optimum without the need to evaluate gradients of objective function. In this thesis, an efficient real-coded genetic algorithm is implemented, which shows a better repeatability and converges to very similar solutions in different runs. This new method of optimization facilitates the use of a coarse subdivision of the design domain rather than the homogenized material method, for the same resolution of shape definition. Therefore, the topology optimization scheme developed in this thesis significantly reduces the computational burden without compromising the sharpness of the shape definition. As the problem of compliant mechanism design is posed as a set of conflicting objectives, a well-posed multi-criteria objective function is introduced which avoids one objective dominating the solution. Moreover, the formulation is modified to incorporate electro-thermal boundaries and enables the optimization of the compliant mechanisms to transfer maximum motion or maximum force at the output. A number of design examples are used to demonstrate the ability of the procedure to generate non-intuitive topologies. Their performance is verified using ANSYS and compared with results from the homogenization method and designs reported in the available literature.
318

Analysis and Modeling of Uncooled Microbolometers with Tunable Thermal Conductance

Topaloglu, Nezih January 2009 (has links)
Uncooled microbolometers have attracted significant interest due to their small size, low cost and low power consumption. As the application range of microbolometers broadens, increasing the dynamic range becomes one of the main objectives of microbolometer research. Targeting this objective, tunable thermal conductance microbolometers have been proposed recently, in which the thermal conductance is tuned by electrostatic actuation. Being a new concept in the field, the current tunable thermal conductance microbolometers have significant potential for improvement in design and performance. In this thesis, an extensive analysis of tunable thermal conductance microbolometers is made, an analytical model is constructed for this purpose, and solutions are proposed to some potential problems such as in-use stiction and variation in spectral response. The current thermal conductance tuning mechanisms use the substrate for electrostatic actuation, which does not support pixel-by-pixel actuation. In this thesis, a new thermal conductance tuning mechanism is demonstrated, that enables pixel-by-pixel actuation by using the micromirror as an actuation terminal instead of the substrate. In addition, a stopper mechanism is used to decrease the risk of in-use stiction. With this new mechanism, the thermal conductance can be tuned by a factor of three at relatively low voltages, making it a promising thermal conductance tuning mechanism for adaptive infrared detectors. Effective estimation of the performance parameters of a tunable thermal conductance microbolometer in the design state requires an analytical model that combines the physics of infrared radiation detection and the thermal conductance tuning mechanisms. As a part of this research, an extensive analytical model is presented, which includes the electrostatic-structural modeling of the thermal conductance tuning mechanism, and electromagnetic and thermal modeling of the microbolometer. The accuracy of the thermal model is of significant importance as the operation of the tuning mechanism within the desired range should be verified in the design stage. A thermal model based on the solution of the microbolometer heat conduction equation is established, which is easily applicable to conventional and tunable thermal conductance microbolometers of various shapes. The constructed microbolometer model is validated by experiments and finite element model simulations. Furthermore, the effect of thermal conductance tuning on spectral response is analyzed. The present thermal conductance tuning mechanisms result in variations in spectral response, which is an undesired effect in many applications. As a solution, a new microbolometer architecture is proposed, in which the spectral response is not affected by thermal conductance. The microbolometer is designed using an analytical model and its performance is characterized by finite element model simulations. To realize the proposed design, a fabrication process flow is offered. It is shown that the proposed microbolometer exhibits high performance, tunable thermal conductance and constant spectral response.
319

A microtechnology-based sensor system for deepwater analysis from a miniaturized submersible

Smedfors, Katarina January 2010 (has links)
The aim of this master thesis has been to design, and partly manufacture and evaluate, a highly miniaturized, on-chip conductivity-temperature-depth (CTD) sensor system for deepwater analysis also including electrodes for pH and chloride ion concentration measurements. The microtechnology-based sensor system will be a vital instrument onboard the Deeper Access, Deeper Understanding submersible, which will be small enough for deployment through bore holes into the subglacial lakes of Antarctica. Design of the complete 15 x 30 mm chip, including variations of each sensor type (in total 39 sensors), is presented. Salinity (through conductivity), temperature, chloride ion concentration and pH sensors have been manufactured using conventional lithography, evaporation, wet etching and lift off techniques. Simulations of the pressure sensors (not manufactured) show how the set of four bossed membranes with integrated strain gauges combine to cover, yet withstand, pressures of 1-100 atm. Salinity is measured conductively with gold electrodes. The temperature sensor is a platinum thermoresistor. Chloride ion concentration and pH are measured potentiometrically with ion-selective microelectrodes of silver/silver chloride and iridium oxide, respectively. Tests of the conductivity sensor gave good results also on sea water samples of known salinity. The temperature sensor showed good linearity to a reference sensor in the tested range of 5-35 C. Issues with evaporation and lift off are discussed, and a process identification document is attached. / DADU
320

Multi-Port RF MEMS Switches and Switch Matrices

Daneshmand, Mojgan January 2006 (has links)
Microwave and millimeter wave switch matrices are essential components in telecommunication systems. These matrices enhance satellite capacity by providing full and flexible interconnectivity between the received and transmitted signals and facilitate optimum utilization of system bandwidth. Waveguide and semiconductor technology are two prominent candidates for the realizing such types of switch matrices. Waveguide switches are dominant in high frequency applications of 100 ? 200 GHz and in high power satellite communication. However, their heavy and bulky profile reinforces the need for a replacement. In some applications, semiconductor switches are an alternative to mechanical waveguide switches and utilize PIN diodes to create the ON and OFF states. Although, these switches are small in size, they exhibit poor RF performance and low power handling. <br /><br /> RF MEMS technology is a good candidate to replace the conventional switches and to realize an entire switch matrix. This technology has a great potential to offer superior RF performance with miniaturized dimensions. Because of the advantages of MEMS technology numerous research studies have been devoted to develop RF MEMS switches. However, they are mostly concentrated on Single-Pole Single-Throw (SPST) configurations and very limited work has been performed on MEMS multi-port switches and switch matrices. Here, this research has been dedicated on developing multi-port RF MEMS switches and amenable interconnect networks for switch matrix applications. To explore the topic, three tasks are considered: planar (2D) multi-port RF MEMS switches, 3D multi-port RF MEMS switches, and RF MEMS switch matrix integration. <br /><br /> One key objective of this thesis is to investigate novel configurations for planar multi-port (SPNT), C-type, and R-type switches. Such switches represent the basic building blocks of switch matrices operating at microwave frequencies. An in house monolithic fabrication process dedicated to electrostatic multi-port RF MEMS switches is developed and fine tuned. The measurement results exhibit an excellent RF performance verifying the concept. Also, thermally actuated multi-port switches for satellite applications are designed and analyzed. The switch performance at room condition as well as at a very low temperature of 77K degrees (to resemble the harsh environment of satellite applications) is measured and discussed in detail. <br /><br /> For the first time, a new category of 3D RF MEMS switches is introduced to the MEMS community. These switches are not only extremely useful for high power applications but also have a great potential for high frequencies and millimetre-waves. The concept is based on the integration of vertically actuated MEMS actuators inside 3D transmission lines such as waveguides and coaxial lines. An SPST and C-type switches based on the integration of rotary thermal and electrostatic actuators are designed and realized. The concept is verified for the frequencies up to 30GHz with measured results. A high power test analysis and measurement data indicates no major change in performance as high as 13W. <br /><br /> The monolithic integration of the RF MEMS switch matrix involves the design and optimization of a unique interconnect network which is amenable to the MEMS fabrication process. While the switches and interconnect lines are fabricated on the front side, taking advantage of the back side patterning provides a high isolation for cross over junctions. Two different techniques are adopted to optimize the interconnect network. They are based on vertical three-via interconnects and electromagnetically coupled junctions. The data illustrates that for a return loss of less than -20dB up to 30GHz, an isolation of better than 40dB is obtained. This technique not only eliminates the need for expensive multilayer manufacturing process such as Low Temperature Co-fired Ceramics (LTCC) but also provides a unique approach to fabricate the entire switch matrix monolithically.

Page generated in 0.0313 seconds