261 |
Conception de capteurs dédiés à la surveillance particulaire biologique des environnements intérieurs / Study of micro-sensors involved in monitoring and diagnosis of the airborne bio-pollutants in closed spaces.Berthelot, Brice 16 December 2015 (has links)
En passant près de 90% de son temps dans les espaces clos, l'Homme est exposé à des polluants particulaires de diverses natures d'origines exogène et endogène au bâtiment, pour lesquels aucune valeur guide n'est disponible. Parmi ces polluants figurent les particules biologiques et notamment les spores fongiques, particules vivantes les plus nombreuses et les plus diversifiées de l'air que nous respirons (Nolard, 1997). Ubiquitaire et délétère, la pollution particulaire fongique est mise en cause dans la survenue de nombreuses pathologies parmi lesquelles se trouvent les maladies immuno-allergiques. Dans le cadre de la surveillance de la qualité micro-biologique de l'air des espaces clos, cette thèse vise à fournir les premiers éléments de conception d'un outil individuel de diagnostic dédié à l'évaluation de l'exposition des occupants aux aérobiocontaminants allergéniques en s'intéressant plus particulièrement à la pollution fongique aéroportée. Cette recherche repose sur les expertises techniques et scientifiques du CSTB, de l'ESIEE et de l'Université Paris-Est en matière de détection fongique, de miniaturisation d'instruments de mesure via les micro technologies et de physique des aérosols. Se faisant, ces travaux cristallisent autour d'une architecture système reposant sur trois axes : la capture et sélection des particules selon leurs propriétés physico-chimiques de surface, la quantification de la masse des particules et l'identification de la nature des particules à l'aide d'une analyse chimique. Ces axes correspondent à autant de thématiques abordées au cours de ces travaux de thèse. Ainsi, la première a consisté à étudier l'adhérence des conidies aux surfaces afin de mieux cerner les déterminants de ce phénomène physique et évaluer les énergies mises en jeu. Les résultats subséquents ont permis, lors d'une deuxième phase de travail, de dimensionner une microbalance en silicium de type MEMS en replaçant les problématiques liées aux interactions particules-résonateurs au cœur du débat. Par ce biais, l'enjeu a été de lever certains verrous scientifiques constatés dans la littérature, telles des sensibilités non-uniformes sur toute la surface des dispositifs de mesure ou encore des réponses en fréquence non linéaires avec la masse déposée. Une telle approche a en outre permis d'évaluer les performances attendues pour de tels capteurs. Enfin, le dernier aspect de cette recherche a porté sur l'identification des particules aéroportées biologiques par voie chimique en combinant pyrolyse des entités biologiques d'intérêt, chromatographie en phase gazeuse et spectroscopie de masse (Py-CPG/MS). A cette occasion, un travail collaboratif engagé avec le Réseau National de Surveillance Aérobiologique a permis d'éprouver la solution technologique et la méthodologie employées puisqu'une seconde catégorie de particules modèles a alors été considérée : les pollens. L'analyse des composés organiques volatiles issus de l'analyse Py-CPG/MS des micromycètes et des pollens a permis de démontrer l'existence d'une signature chimique spécifique de l'origine biologique des particules. Suite à cela, il a été possible d'établir diverses listes de traceurs chimiques caractéristiques des phyla voire des espèces des différents contaminants étudiés. La pertinence de ces marqueurs a alors été éprouvée lors d'un essai in situ / Nowadays people pass 90% of their time in closed spaces, and in consequence are exposed to indoor and outdoor particulate matter for which no reference value is available. These pollutants include biological particles and in particular fungal spores, the most numerous living particles and most diverse on the air we breathe (Nolard, 1997). Ubiquitous and harmful, fungal particulate pollution is implicated in the occurrence of many diseases including immuno-allergic diseases. In the context of the monitoring of the microbiological quality of air in indoor spaces, this thesis aims to provide first design elements of an individual diagnostic device dedicated to the exposure assessment of allergenic bio-contaminants focusing in particular on airborne fungal pollution. This research relies on the technical and scientific expertise of CSTB, ESIEE Paris and Université Paris-Est for fungal detection, miniaturization of measurement instrumentation and aerosol physics. Thus, this work is built around a system architecture based on three main elements: the capture and selection of particles according to their surface physical and chemical properties, the particles mass quantification and the identification of the nature of the particle using chemical analysis. These elements relate to many topics covered during the thesis work. In this way, the first topic consists in studying the adhesion of conidia to surfaces to better understand the determinants of this physical phenomenon and evaluate the energies involved. Subsequent results were used during a second stage of this work, to design a MEMS-type silicon microbalance considering the particle-resonator interaction. By this mean the issue was to solve some scientific challenges identified in the literature, such non-uniform sensitivity over the entire device surface or nonlinear frequency responses due to the added mass. Such an approach has also allowed evaluating the performance expected for such sensors. The last aspect of this research focused on the identification of biological airborne particles chemically combining pyrolysis of biological entities of interest, and gas chromatography and mass spectrometry (Py-GC/MS). On this occasion, a collaborative work engaged with the "Réseau National de Surveillance Aérobiologique" allowed to experience the technological solution and our methodology since another class of particles was considered: pollens. The analysis of volatile organic compounds obtained from Py-GC/MS characterization of micro-fungi and pollens demonstrated the existence of a specific chemical signature for each biological particle class. Thereafter, it was then possible to establish a variety of chemical markers lists for phyla and different species of the contaminants studied. The relevance of these markers has been further tested in an in-situ assay
|
262 |
Modellierung und Entwurf von resonanten Mikroaktoren mit elektrostatischem Antrieb / Modelling and design of resonant microactuators with electrostatic driveKlose, Thomas 15 April 2016 (has links) (PDF)
Resonante Mikrobauelemente mit elektrostatischem Antrieb finden seit einigen Jahren vermehrt Anwendung in vielen Bereichen der Technik. So beruhen beispielsweise Drehraten- oder Beschleunigungssensoren, die im Automobilbau eingesetzt werden auf diesem Prinzip. Neue Anwendungsfelder ergeben sich vor allem für Aktoren, beispielsweise für die am Fraunhofer IPMS entwickelten Mikroscannerspiegel mit Out-of-plane-comb-Antrieb. Sie dienen zur geometrischen Ablenkung von Licht und können zur Realisierung von hochintegrierten Systemen zur Ausgabe (Laser-Projektor) oder Aufnahme (Laser-Imager) von Daten genutzt werden. Zum Entwurf von Mikroaktoren gibt es eine Reihe von Arbeiten, die sich meist auf ein konkretes Antriebsprinzip beziehen oder den Entwurf im Allgemeinen behandeln.
Die vorliegende Arbeit verfolgt daher das Ziel, speziell die Randbedingungen beim Entwurf resonanter Mikroaktoren mit Out-of-plane-comb-Antrieb zu identifizieren bzw. zu systematisieren sowie die gewonnenen Erkenntnisse in einem effizienten Entwurfsprozess umzusetzen. Dabei sollen möglichst auch relevante nichtlineare Effekte berücksichtigt werden, sodass sich neue Möglichkeiten zur Optimierung der Bauelemente und damit zur Erweiterung des Entwurfsraums ergeben. / Electrostatically driven microsystems are utilized in technical systems for several years. For instance, they are used in automotive applications as acceleration sensors or angular rate sensors. New fields of applications appear especially for actuators. The scanning micromirror of the Fraunhofer Institute for Photonic Microsystems is such an actuator. It is a micro-optical-electrical microsystem (MOEMS) which is driven resonantly by an electrostatic comb drive and can be used in scanning laser imaging systems or laser projectors. Several technical and scientific publications occupy with the design and the simulation of microactuators, which refer usually to a concrete drive principle or to the issues of design in general.
The intention of this thesis is to identify and systematize particularly the boundary conditions of design regarding to resonant micro actuators with out-of-planecomb drive. The findings are implemented in efficient design tools and design processes. One emphasis thereby is the investigation of nonlinear properties and effects. This includes geometrically non-linearities of suspensions as well as non-linearities caused by fluid damping and the electrostatic comb drive. The findings are utilized in an analytical, nonlinear stability analysis of the device's equation of motion as well as in an object oriented software library for the MATLAB environment, which can be used to create nonlinear reduced order models of scanning micromirrors. With the developed techniques for design and optimization the available parameter range of scanning micromirrors can be extended. By that means, it is possible to improve the properties of existing devices as well as create new devices with outreaching performance.
|
263 |
Méthodes alternatives pour le test et la calibration de MEMS : application à un accéléromètre convectif / Alternative methods for test and calibration of MEMS : application to convective accelerometerRekik, Ahmed 09 December 2011 (has links)
Le test et la calibration des MEMS sont des enjeux complexes à cause de leur nature multi-domaines. Ils nécessitent l'application de stimuli physiques, en utilisant des équipements de test coûteux, afin de tester et de calibrer leurs spécifications. L'objectif de cette thèse est de développer des méthodes alternatives et purement électriques pour tester et calibrer un accéléromètre MEMS convectif. Premièrement, un modèle comportemental du capteur est développé et validé en se basant sur des simulations FEM. Il inclut l'influence de tous les paramètres géométriques sur la sensibilité du capteur. Deuxièmement, le modèle est utilisé pour simuler des fautes dans le but d'identifier la corrélation qui peut exister entre la sensibilité du capteur à l'accélération et certains paramètres électriques. Troisièmement, cette corrélation est exploitée pour développer des méthodes de test et de calibration alternatives où la sensibilité est estimée en effectuant uniquement des mesures électriques et sans appliquer de stimuli physiques (accélérations). L'efficacité de ces méthodes est ainsi démontrée. Finalement, deux architectures permettant l'auto-test et l'auto-calibration sur puce sont proposées. / MEMS test and calibration are challenging issues due to the multi-domain nature of MEMS devices. They therefore require the application of physical stimuli, using expensive test equipments, to test and to calibrate their specifications. The main objective of this thesis is to develop alternative electrical-only test and calibration procedures for MEMS convective accelerometers.First, a behavioral model that includes the influence of sensor geometrical parameters on sensitivity is developed and validated with respect to FEM simulations. Second, the model is used to perform fault simulations and to identify correlation that may exist between device sensitivity to acceleration and some electrical parameters. Third, this correlation is exploited to develop alternative test and calibration methods where the sensitivity is estimated using only electrical measurements and without applying any physical stimulus (acceleration). The efficiency of these methods is demonstrated. Finally, two architectures that allow on-chip test and calibration are proposed.
|
264 |
Analyse des limites de résolution fréquentielle des capteurs vibrants de type MEMS / Analysis of the frequency resolution limits of MEMS vibrating sensorsPapin, Guillaume 18 December 2014 (has links)
Les capteurs de type MEMS (Micro Electro Mechanical Systems) sont des microsystèmes mettant en œuvre différents domaines de la physique (électronique, mécanique, chimie, optique,...) et permettant de mesurer différentes grandeurs physiques (accélération, pression, température...). Parmi ces micro-capteurs, les MEMS vibrants se caractérisent par leur structure présentant un micro-résonateur mis en vibration à sa fréquence de résonance et la variation de cette fréquence est représentative du mesurande. Cette thèse s'intéresse principalement à analyser et identifier les limites de résolution fréquentielle de ces capteurs vibrants en effectuant une modélisation multiphysique. Dans un premier temps, nous avons modélisé le comportement multiphysique d'un capteur MEMS vibrant en détaillant trois types de transduction (piézoélectrique, électrostatique et optique). La seconde partie a permis de valider les équations développées en se basant sur les simulations sous Cadence (langage multiphysque Verilog-A) et en les validant par des mesures expérimentales. La dernière partie traite de l'optimisation d'un micro-accéléromètre de type VIA (Vibrating Inertial Accelerometer) et l'étude de l'annulation des non linéarités permettant d'améliorer la résolution d'un capteur MEMS vibrant / MEMS (Micro Electro Mechanical Systems) sensors are micro-systems implementing various fields of physics (electronical, mechanical, chemical, optical, ...) and measuring various physical quantities (acceleration, pressure, temperature ...). The vibrating MEMS are characterized by a micro-resonator vibrating at its resonant frequency. The frequency variation is proportional to the measurand. This thesis is concerned with analyzing and identifying the frequency resolution limits of these vibrating sensors by performing multiphysics modeling. The first step is to model the multiphysics behavior of a vibrating MEMS sensor with three transduction types (piezoelectrical, electrostatical and optical). Secondly, the equations developed are validated, based on simulations with Cadence (multiphysique language Verilog-A) and their comparaison with experimental measurements. The last section presents the micro-accelerometer VIA (Vibrating Inertial Accelerometer) optimization and the nonlinearities cancellation study for improving the resolution of vibrating MEMS sensor
|
265 |
Conception et intégration d'une électronique de conditionnement pour un capteur audio à base de nano-fils de silicium / Design of read-out circuit dedicated to silicon nano-wire based audio sensorSavary, Eric 23 April 2015 (has links)
Les microphones sont des capteurs qui permettent à nos systèmes électroniques de prendre connaissance de notre environnement acoustique en fournissant un signal électrique représentatif des vibrations de l’air. Ils sont employés dans la plupart des systèmes multimédia, mais aussi dans les appareils auditifs. Dans l’implant auditif, le microphone se substitue à l’oreille humaine capable de détecter des pressions acoustiques variants de quelque μPa à quelques Pa. Les microphones, sont en général accompagnés d’un circuit électronique spécifique qui permet leur exploitation au coeur d’un système hétérogène. Depuis les toutes premières transductions acoustique-électriques, le microphone a été perfectionné avec la mise en oeuvre de nouveau principes de transduction et l’élaboration de circuit de conditionnement plus performants. Dernièrement, l’introduction de la technologie MEMS (Micro Electro Mechanical Systems) a permis de réaliser des microphones extrêmement compacts et peu couteux. Ces travaux de recherches concernent la réalisation d’un circuit électronique dédié à l’exploitation d’un transducteur M&NEMS (Micro & Nano Electro Mechanical Systems) survenant comme une évolution du MEMS. Pour commencer l’étude, le principe de transduction et l’application du microphone sont étudiés. Les circuits existants sont examinés en détail et adaptés au transducteur M&NEMS. Les résultats potentiels sont discutés et situés dans l’application. Dans un second temps, un circuit de conditionnement spécifique est proposé. Les résultats sont présentés puis le circuit électronique dédié est intégré sur silicium. Les performances des blocs fonctionnels intégrés sont mesurées et présentées. / Microphones are sensors which allow gauging acoustic environment through an electric representation of vibrations in the air. They can be found in most multimedia equipment and in hearing aids. In this particular application, microphone substitutes a human ear which is able to sense pressure level of sound ranging from a μPa to few Pa. The read-out circuit of microphones converts physical signal from transducer into electronic signals that can be used in any heterogeneous system involving audio processing. Transducers of microphones have known successive generation of improvement. The latest refinement is related to the emergence of MEMS (Micro Electro Mechanical Systems) technology which is suitable to build compact sensor. This thesis explores the design of a readout-circuit using an innovative M&NEMS (Micro & Nano Electro Mechanical Systems) technology derived from MEMS. The thesis is structured beginning with review of existing circuits for M&NEMS microphone. A comparative study is reported considering the proposed technical specifications using simulations and a prototype was realized using discrete components. In the second phase, an innovative circuit was proposed as an ASIC solution targeting M&NEMS technology developed at CEA-LETI. The performance evaluation and the physical measurements of the proposed ASIC are detailed.
|
266 |
Testování MEMS gyroskopů / Testing of MEMS gyroscopesHasík, Stanislav January 2016 (has links)
This diploma thesis presents theoretical information regarding MEMS gyroscopes their parameters and designs. The description of measurement chain be used for testing of MEMS gyroscopes in Honeywell International s.r.o. is presented. Special focus is devoted to: the Polytec MSA-500 system, the Standa goniometers and their controller, Peltier cell and its driver. The practical part of this thesis contains the description of the thermal control system and also the description of the developed “Measurement system” in the LabVIEW software which is used for controlling the goniometers position and the Peltier cell. The system is able to fully control two goniometer stages, align the surface of tested MEMS device to orthogonal position with respect to the Polytec MSA-500 measurement head and also control the temperature of the tested device. The last part of this thesis presents the tests of the MEMS gyroscope parameters with special focus to the MEMS gyroscope angle random walk and the bias dependence on the vacuum quality of the structure environment.
|
267 |
Inerciální navigační jednotka / Inertial Navigation UnitDvořák, Jan January 2017 (has links)
This thesis is focused on the design and realisation of inertial navigation unit INS. The unit is capable to measure, store and send data to a PC in real-time for a later offline processing. The first part of the thesis introduces the reader with the basic principles of accelerometers, gyroscopes and MEMS sensors. An introduction to coordinate systems and measuring errors is also included. The second and third part of the thesis deals with the analysis of the solution and the implementation of the INS unit. The fourth part of the document is dedicated to the software for the INS unit. This thesis concludes with explanation how the gathered data are processed.
|
268 |
Capteur de pression résonant à nanojauges pour application aéronautique / Resonant pressure sensor with nanogauges detection for aeronautic applicationLehée, Guillaume 22 October 2015 (has links)
Le marché des capteurs de pression pour le secteur aéronautique est mature mais encore en forte croissance, caractérisé par une forte valeur ajoutée, et générateur d'une forte demande en innovation. Par exemple, le rapprochement des systèmes de mesure vers les zones chaudes de l'avion nécessite de revoir l'architecture du capteur, dont l'élément sensible.Pour répondre à ces besoins, nous avons développé un capteur de pression intégrant une détection du mouvement d'un microrésonateur sur membrane avec des nanofils en silicium piezorésistifs. Une version simplifiée de microrésonateur sans ces nanojauges de déformation a été conçue, modélisée, fabriquée puis caractérisée afin d'en valider le bon fonctionnement. En parallèle, les caractéristiques électro-thermo-mécaniques et de bruit de nanojauges couplées à des résonateurs M&NEMS issus de précédents travaux ont été étudiées. Nous avons ainsi montré qu'un nanofil en compression harmonique longitudinale à basse fréquence se comporte comme un ressort-amorti pouvant dominer la réponse harmonique du résonateur MEMS, malgré ses dimensions minuscules. De plus, nous avons montré pour la première fois que la réponse harmonique d'un résonateur pouvait être ajustée « in-situ » à l'aide du phénomène de rétro-action pieozorésistive en modifiant uniquement la polarisation des nanofils. Enfin, les performances théoriques du capteur de pression ont été estimées à partir de données expérimentales relevées sur différents types de résonateurs M&NEMS. Ces performances théoriques sont satisfaisantes vis-à-vis des spécifications du capteur, mais nécessiteront néanmoins d'être validées expérimentalement. / The market of pressure sensors for aeronautics is mature but still strongly growing, defined by a strong added value and a large innovation need. Bringing pressure sensors closer to hot parts of the plane, requires, for example, to re-consider the sensor architecture, including the sensitive element.In order to comply with these requirements, we have developed a resonant pressure sensor with motion detection by Si piezoresistive nanowires. A simplified version of the resonator without these nanogauges has been modelled, fabricated and characterized to confirm its good operation. In parallel, electro-thermo-mechanical and noise characteristics of nanogauges coupled to M&NEMS resonators arising from previous works have been studied. We have notably demonstrated that the damped-spring behavior of an harmonically longitudinally stressed nanowire at low frequency could govern the MEMS resonator response, despite its tiny dimensions. Moreover, we have shown for the first time that the resonator response could be tuned “in situ” owing to the piezoresistive back action phenomenon only by acting on the nanowire biasing.Eventually, the theoretical performances of the resonant pressure sensor have been estimated from experimental data on different kind of M&NEMS resonator. These theoretical performances satisfy the sensor specifications; nevertheless they need to be confirmed experimentally.
|
269 |
BioMEMS for cardiac tissue monitoring and maturationJavor, Josh 15 May 2021 (has links)
Diseases of the heart have been the most common cause of death in the United States since the middle of the 20th century. The development of engineered cardiac tissue over the last three decades has yielded human induced pluripotent stem cell-derived (hiPSC) cardiomyocytes (CMs), microscale “heart-on-a-chip” platforms, optical interrogation techniques, and more. Having spawned its own scientific field, ongoing research promises lofty goals to address the heart disease burden around the world, such as patient-specific disease models, and clinical trials on chip-based platforms. The greatest academic pursuit for engineered cardiac tissues is to increase their maturity, thereby increasing relevance to native adult tissue. Investigation of cardiomyocyte maturity necessitates the development of 3D-tissue compatible techniques for measuring and perturbing cardiac biology with enhanced precision.
This dissertation focuses on the development of biological microelectromechanical systems (BioMEMS) for precision measurement and perturbation of cardiac tissue. We discuss three unique approaches to interfacing MEMS-based tools with cardiac biology. The first is a high resolution magnetic sensor, which directly measures the spatial gradient of a magnetic field. This has an ideal application in magnetocardiography (MCG), as the flux of ions during cardiac contractions produces measurable magnetic signals around the tissue and can be leveraged for noncontact diagnosis. The second is a highly functionalized heart-on-a-chip platform, wherein the mechanical contractions of cardiac microtissues can be simultaneously recorded and actuated. Contractile dynamics are leading indicators of maturity in engineered cardiac tissue and mechanical conditioning has shown recent promise as a critical component of cardiac maturation. The third is the imaging of contractile nanostructures in engineered cardiomyocytes at depth in a 3D microtissue. We use small angle X-ray scattering (SAXS) to discern the periodic arrangement of myofilaments in their native 3D environment. We enable a significant structural analysis to provide insight for functional maturation. Enabling these three thrusts required developing two supporting technologies. The first is the engineered control of dynamic second order systems, a foundational element of all our MEMS and magnetic techniques. We demonstrate numerous algorithms to improve settling time or decrease dead-time such that samples with fast temporal effects can be measured. The second is a microscale gluing technique for integrating myriad of materials with MEMS devices, yielding unique sensors and actuators. / 2022-05-15T00:00:00Z
|
270 |
Modélisation et simulation haut-niveau de micro-systèmes électromécaniques pour le prototypage virtuel multi-physique en SystemC-AMS / System-level modeling and simulation of microelectromechanical systems for multi-physics virtual prototyping in SystemC-AMSVernay, Benoît 16 June 2016 (has links)
L'évolution des systèmes embarqués se traduit aujourd'hui par des ensembles complexes, dits systèmes cyber-physiques, opérant principalement en réseau et interagissant fortement avec leur environnement.Intégrés à des circuits de contrôle et de traitement du signal, les micro-systèmes électromécaniques, ou MEMS, jouent un rôle primordial dans ces ensembles en tant que capteurs ou actionneurs.La conception de tels systèmes requiert des solutions globales et pluri-disciplinaires telles que le prototypage virtuel.Basée sur des modèles haut-niveau, cette technique permet d'anticiper le comportement du système dès les premières phases de conception et de le raffiner lors de phases plus avancées.Ces méthodes ont progressivement été appliquées à la conception de circuits intégrés, notamment avec l'utilisation de langages de description matérielle, tels que VHDL ou Verilog.En adoptant un niveau d'abstraction supérieur, SystemC a largement contribué au développement concourant des parties matérielles et logicielles.Parallèlement, les extensions proposées dans SystemC-AMS répondent au nombre croissant de composants analogiques dans les circuits intégrés et constituent une base prometteuse pour le prototypage virtuel de systèmes hétérogènes.Pour cette raison, cette thèse traite de la modélisation et de la simulation haut-niveau de dispositifs MEMS en SystemC-AMS.Dans un premier temps, nous évaluons les capacités actuelles du standard et des modèles de calcul proposés dans SystemC-AMS.Nous démontrons les limites et la difficulté d'élaborer des modèles équivalents de dispositifs MEMS dont la géométrie et les couplages internes nécessitent des descriptions plus détaillées.Nous proposons donc, dans un deuxième temps, d'intégrer directement dans SystemC-AMS des modèles réduits de dispositifs MEMS.La réduction d'ordre de modèle est une méthode mathématique permettant de créer des représentations compactes de systèmes initialement très larges en termes de degrés de liberté.Ainsi, nous utilisons les modèles générés depuis l'outil d'analyse en éléments finis \emph{MEMS+} et proposons une interface de programmation pour les insérer dans des modèles SystemC-AMS.Après avoir détaillé les principales fonctionnalités de l'interface, nous discutons les améliorations possibles du standard et de la solution présentée.Enfin, nous vérifions notre solution avec l'étude d'un accéléromètre et comparons les résultats avec l'état de l'art en termes de précision des modèles et de performances de simulation.Cette thèse propose ainsi une méthodologie complète pour intégrer des dispositifs MEMS dans un environnement de simulation haut-niveau. / Embedded systems have evolved to more complex assemblies, called Cyber-Physical Systems (CPS), mostly operating through networks and tightly interacting with the environment.As actuators or sensors, micro-electromechanical systems (MEMS) are essential elements in these systems where they are integrated along with control and signal processing units.Designing such solutions requires a multi-domain approach like virtual prototyping.Based on system-level models, this technique allows to anticipate the global behavior in early-design phases and to further refine it in more advanced steps.Integrated circuits were progressively designed with respect to this method, especially through Hardware Description Languages (HDLs) like VHDL or Verilog.By adopting a higher-abstraction degree, SystemC enabled the co-development of hardware/software specific applications.In parallel, the Analog and Mixed-Signal (AMS) extensions proposed in SystemC-AMS partly addressed the increasing amount of analog components and are considered as a promising alternative for the virtual prototyping of heterogeneous systems.To that end, this thesis addresses the system-level modeling and simulation of MEMS devices in SystemC-AMS.First, we evaluate the current capabilities of the standard and supported models of computation in SystemC-AMS.We demonstrate the limitations and the the difficulty to elaborate equivalent models of MEMS devices whose geometry and internal coupling require more detailed descriptions.Second, we propose to directly integrate MEMS reduced models in SystemC-AMS.Model-order reduction is a mathematical technique to decrease the number of degrees of freedom and generate compact models from large-scale systems.We thus integrate the reduced models exported from the finite-element analysis tool \emph{MEMS+} and propose an Application Programmable Interface (API) to insert these \textit{ad hoc} models in SystemC-AMS.After reviewing the main API features, we discuss some improvements of both the standard and the presented solution.Finally, we verify our solution through the use case of an accelerometer and compare the results with the state of the art in terms of modeling accuracy and simulation performance.This thesis introduces a framework to integrate MEMS devices with the surrounding electronics in a unified system-level simulation environment.
|
Page generated in 0.055 seconds