• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 18
  • 18
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-level modeling for verification and synthesis of complex systems in a multi-physics context. / Modélisation Multi-Paradigme pour la Synthèse et la Validation de Systèmes Complexes en Environnement Multi-Physique.

Chaves Café, Daniel 10 July 2015 (has links)
À l'ère de systèmes électroniques intégrés, les ingénieurs font face au défi de concevoir et de tester des systèmes hétérogènes contenant des parties analogiques, numériques, mécaniques et même du logiciel embarqué. Cela reste très difficile car il n'y a pas d'outil unifiant ces différents domaines de l’ingénierie. Ces systèmes, dits hétérogènes, ont leur comportement exprimées et spécifiés par plusieurs formalismes, chacun particulier à son domaine d'expertise (diagramme de machines à état pour les circuits de contrôle numérique, équations différentielles pour les modèles mécaniques, ou bien des réseaux de composants pour les circuits analogiques). Les outils de conception existants sont destinés à traiter des systèmes homogènes en utilisant un seul formalisme à la fois. Dans l'état actuel, l'industrie se bat avec des problèmes d'intégration à chaque étape de la conception, à savoir la spécification, la simulation, la validation et le déploiement. L'absence d'une approche qui comprend les spécifications des interfaces inter-domaines est souvent la cause des problèmes d'intégration de différentes parties d'un système hétérogène. Cette thèse propose une approche pour faire face à l'hétérogénéité en utilisant SysML comme outil fédérateur. Notre proposition repose sur la définition d'une sémantique explicite pour les diagrammes SysML ainsi que des éléments d'adaptation sémantiques capables d'enlever les ambiguïtés dans les interfaces multi-domaines. Pour démontrer l'efficacité de ce concept, un ensemble d'outils basés sur l'ingénierie dirigé par les modèles a été construit pour générer du code exécutable automatiquement à partir des spécifications. / In the era of highly integrated electronics systems, engineers face the challenge of designing and testing multi-faceted systems with single-domain tools. This is difficult and error-prone. These so called heterogeneous systems have their operation and specifications expressed by several formalisms, each one particular to specific domains or engineering fields (software, digital hardware, analog, etc.). Existing design tools are meant to deal with homogeneous designs using one formalism at a time. In the current state, industry is forced to battle with integration issues at every design step, i.e. specification, simulation, validation and deployment. Common divide-to-conquer approaches do not include cross-domain interface specification from the beginning of the project. This lack is often the cause of issues and rework while trying to connect parts of the system that were not designed with the same formalism. This thesis proposes an approach to deal with heterogeneity by embracing it from the beginning of the project using SysML as the unifying tool. Our proposal hinges on the assignment of well-defined semantics to SysML diagrams, together with semantic adaptation elements. To demonstrate the effectiveness of this concept, a toolchain is built and used to generate systems simulation executable code automatically from SysML specifications for different target languages using model driven engineering techniques.
2

Multi-level modeling for verification and synthesis of complex systems in a multi-physics context. / Modélisation Multi-Paradigme pour la Synthèse et la Validation de Systèmes Complexes en Environnement Multi-Physique.

Chaves Café, Daniel 10 July 2015 (has links)
À l'ère de systèmes électroniques intégrés, les ingénieurs font face au défi de concevoir et de tester des systèmes hétérogènes contenant des parties analogiques, numériques, mécaniques et même du logiciel embarqué. Cela reste très difficile car il n'y a pas d'outil unifiant ces différents domaines de l’ingénierie. Ces systèmes, dits hétérogènes, ont leur comportement exprimées et spécifiés par plusieurs formalismes, chacun particulier à son domaine d'expertise (diagramme de machines à état pour les circuits de contrôle numérique, équations différentielles pour les modèles mécaniques, ou bien des réseaux de composants pour les circuits analogiques). Les outils de conception existants sont destinés à traiter des systèmes homogènes en utilisant un seul formalisme à la fois. Dans l'état actuel, l'industrie se bat avec des problèmes d'intégration à chaque étape de la conception, à savoir la spécification, la simulation, la validation et le déploiement. L'absence d'une approche qui comprend les spécifications des interfaces inter-domaines est souvent la cause des problèmes d'intégration de différentes parties d'un système hétérogène. Cette thèse propose une approche pour faire face à l'hétérogénéité en utilisant SysML comme outil fédérateur. Notre proposition repose sur la définition d'une sémantique explicite pour les diagrammes SysML ainsi que des éléments d'adaptation sémantiques capables d'enlever les ambiguïtés dans les interfaces multi-domaines. Pour démontrer l'efficacité de ce concept, un ensemble d'outils basés sur l'ingénierie dirigé par les modèles a été construit pour générer du code exécutable automatiquement à partir des spécifications. / In the era of highly integrated electronics systems, engineers face the challenge of designing and testing multi-faceted systems with single-domain tools. This is difficult and error-prone. These so called heterogeneous systems have their operation and specifications expressed by several formalisms, each one particular to specific domains or engineering fields (software, digital hardware, analog, etc.). Existing design tools are meant to deal with homogeneous designs using one formalism at a time. In the current state, industry is forced to battle with integration issues at every design step, i.e. specification, simulation, validation and deployment. Common divide-to-conquer approaches do not include cross-domain interface specification from the beginning of the project. This lack is often the cause of issues and rework while trying to connect parts of the system that were not designed with the same formalism. This thesis proposes an approach to deal with heterogeneity by embracing it from the beginning of the project using SysML as the unifying tool. Our proposal hinges on the assignment of well-defined semantics to SysML diagrams, together with semantic adaptation elements. To demonstrate the effectiveness of this concept, a toolchain is built and used to generate systems simulation executable code automatically from SysML specifications for different target languages using model driven engineering techniques.
3

Modelagem em SystemC-AMS de uma plataforma compat?vel com o sistema de coleta de dados brasileiro

Costa, Haulisson Jody Batista da 03 September 2009 (has links)
Made available in DSpace on 2014-12-17T14:55:39Z (GMT). No. of bitstreams: 1 HaulissonJBC.pdf: 4077011 bytes, checksum: fcba1ed8fcdc3b273e8994b6775327be (MD5) Previous issue date: 2009-09-03 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / This work presents simulation results of an identification platform compatible with the INPE Brazilian Data Collection System, modeled with SystemC-AMS. SystemC-AMS that is a library of C++ classes dedicated to the simulation of heterogeneous systems, offering a powerful resource to describe models in digital, analog and RF domains, as well as mechanical and optic. The designed model was divided in four parts. The first block takes into account the satellite s orbit, necessary to correctly model the propagation channel, including Doppler effect, attenuation and thermal noise. The identification block detects the satellite presence. It is composed by low noise amplifier, band pass filter, power detector and logic comparator. The controller block is responsible for enabling the RF transmitter when the presence of the satellite is detected. The controller was modeled as a Petri net, due to the asynchronous nature of the system. The fourth block is the RF transmitter unit, which performs the modulation of the information in BPSK ?60o. This block is composed by oscillator, mixer, adder and amplifier. The whole system was simulated simultaneously. The results are being used to specify system components and to elaborate testbenchs for design verification / Este trabalho apresenta resultados de simula??o de uma plataforma de identifica??o compat?vel com o Sistema de Coleta de Dados Brasileiro do INPE, modelado com SystemC-AMS. SystemC-AMS, que ? uma biblioteca de classes C++ dedicada ? simula??o de sistemas heterog?neos, oferece um recurso poderoso para descrever modelos nos dom?nios digital, anal?gico e de RF, bem como sistemas mec?nicos e ?ticos. O modelo projetado foi dividido em quatro partes. O primeiro bloco leva em considera??o a ?rbita do sat?lite, necess?rio para modelar corretamente o canal, inclui o efeito Doppler, a atenua??o e o ru?do t?rmico. O bloco identifica??o que detecta a presen?a de sat?lite ? composto por um amplificador de baixo ru?do, filtro passa-banda, detector de pot?ncia e um comparador l?gico. O bloco controlador ? respons?vel por habilitar o transmissor RF, quando a presen?a do sat?lite ? detectada. O controlador foi modelado por uma rede de Petri, devido ? natureza ass?ncrona do sistema. O quarto bloco ? o transmissor, que realiza a modula??o da informa??o em BPSK ?60o. Este bloco ? composto por oscilador, misturadores, somador e amplificador. Todo o sistema foi simulado simultaneamente. Os resultados ser?o utilizados para especificar componentes de sistema e para a elabora??o de banco de testes para a verifica??o do projeto
4

Environnement de conception multi-niveaux unifiée appliqué aux systèmes mixtes

Vasilevski, Michel 04 October 2012 (has links) (PDF)
Ce travail se place dans le contexte de la conception, la modélisation et la simulation de systèmes hétérogènes contenant a la fois des capteurs, des composants analogiques, des composants numériques et des circuits RF.La seule manière de simuler un système avec une telle complexité avec un temps de simulation raisonnable est de faire une modélisation haut niveau.Cependant, pour que ce modèle haut niveau soit fiable, les modèles des blocs analogiques et RF doivent contenir une description précise des leurs imperfections.Dans ce travail nous proposons une méthode systématique pour la caractérisation et le raffinement des modèles des blocs analogiques et RF.Cette méthode est réalisée dans un environnement C++ base sur: - l'outil de simulation haut niveau SystemC-AMS- l'outil de résolution d'expression symbolique GiNaC- l'outil de synthèse de circuits intégrés analogique CAIRO+/CHAMSPour illustrer la validité de la méthode proposée, nous présenterons le modèle d'un nœud d'un réseau de capteurs sans fil avec une caractérisation automatique de certains blocs analogiques et RF.Les points suivant résument les contributions apportées pour ce travail.- La première implémentation d'un modèle analogique numérique mixte complexe avec le langage SystemC AMS: un nœud de réseau de capteurs sans fil.- L'introduction du raffinement pour une approche générique des modèles au niveau système.- Un outil d'évaluation précise des performances linéaires et non-linéaires des circuit analogiques pour le raffinement des modèles niveau système et l'optimisation de la conception niveau circuit.- Une méthodologie de conception niveau circuit basée sur des outils de dimensionnement et d'évaluation des performances avec précision.- Un environnement de conception multi-niveaux unifiée appliqué aux systèmes mixtes avec une très forte interaction entre la simulation niveau système et la conception optimisée niveau circuit.
5

Systemc Implementation With Analog Mixed Signal Modeling For A Microcontroller

Mert, Yakup Murat 01 April 2007 (has links) (PDF)
In this thesis, an 8-bit microcontroller, PIC 16F871, has been implemented using SystemC with classical hardware design methods. Analog modules of the microcontroller have been modeled behaviorally with SystemC-AMS which is the analog and mixed signal extensions for the SystemC. SystemC-AMS provides the capability to model non-digital modules and synchronization with the SystemC kernel. In this manner, electronic systems that have both digital and analog components can be described and simulated very effectively. The PIC 16F871 is a well known and very common microcontroller. Its architecture, peripheral modules and analog components makes this microcontroller pretty good model for a System on Chip (SoC) concept. Designed microcontroller&rsquo / s peripheral modules, instruction set and addressing modes have been verified utilizing the test codes. Besides, designed microcontroller has been tested with 16-bit CRC code. Moreover, a synchronous demodulator system that involves designed microcontroller and additional analog units has been constructed and simulated. Finally, SystemC to hardware flow has been demonstrated with implementation of arithmetic logic unit of the 16F871 into FPGA based hardware.
6

Mixed-Level-Simulation heterogener Systeme mit VHDL-AMS durch Multi-Architecture-Modellierung

Schlegel, Michael 16 December 2005 (has links) (PDF)
Die Simulation heterogener Systeme auf hoher Abstraktionsebene gewinnt auf Grund der zunehmenden Komplexität technischer Systeme stetig an Bedeutung. Unter heterogenen Systemen versteht man technische Systeme, die aus analoger und digitaler Elektronik, aus Komponenten verschiedener physikalischer Domänen wie mechanischen Strukturen, thermischen und optischen Komponenten sowie aus Software bestehen können. Genügte es bisher, die einzelnen Komponenten für sich in ihrer eigenen Domäne mit einem speziellen Simulator zu simulieren, so ist es heute unerläßlich, auch die Interaktionen zwischen den Komponenten zu erfassen. Um solche Systeme mit einer einheitlichen Beschreibungsform erfassen zu können, entstand aus der digitalen Hardwarebeschreibungssprache VHDL die Systembeschreibungssprache VHDL-AMS. Bei der Modellierung eines Systems muß das tatsächliche Verhalten der Komponenten abstrahiert werden, um mathematisch erfaßbar und in begrenzter Zeit simulierbar zu sein. Der Grad der Abstraktion beeinflußt jedoch die Genauigkeit der Simulationsergebnisse wesentlich. Dabei muß bzw. kann das Verhalten in unterschiedlichen Komponenten unterschiedlich stark abstrahiert werden, um noch akzeptable Simulationsgenauigkeiten erzielen zu können. VHDL-AMS erlaubt die Beschreibung von Komponenten auf unterschiedlichen Abstraktionsniveaus. Man kann die unterschiedlich abstrakten Modelle der Komponenten aber nur schwer in einer Systemsimulation gemeinsam simulieren, da unterschiedlich abstrakte Modelle auch unterschiedlich abstrakte Schnittstellen aufweisen, so daß die Modelle nur mühsam miteinander verbunden werden können. Ein Austausch eines abstrakten Modells einer Komponente gegen ein weniger abstraktes Modell oder umgekehrt ist mit vielen fehleranfälligen und zeitaufwendigen Anpassungsschritten verbunden. Im Rahmen dieser Arbeit wird ein methodischer Ansatz vorgestellt, der es auf der Basis einer Vereinheitlichung der Modellschnittstellen ermöglicht, unterschiedlich abstrakte Modelle gemeinsam zu simulieren und einzelne Modelle gegen abstraktere oder weniger abstrakte Modelle ohne nennenswerten Zeit- und Modellierungsaufwand auszutauschen. Es werden die zu verwendenden Interfaceobjekte und Datentypen für digitale, analoge elektrische und nichtelektrische Schnittstellen unter VHDL-AMS und SystemC-AMS vorgestellt. Ebenso werden Methoden vorgestellt, die digitales, ereignisdiskretes Verhalten auf konservative elektrische Schnittstellen bzw. nichtkonservatives analoges Verhalten auf digitale Schnittstellen abbilden. Weiterhin wird erläutert, wie sich digitale Protokolle über Abstraktionsebenen hinweg übertragen lassen und ein modifizierter Top-Down Design-Flow vorgestellt. Die Demonstration der Anwendbarkeit der Methode erfolgt anhand eines Beispiels.
7

Modélisation et simulation haut-niveau de micro-systèmes électromécaniques pour le prototypage virtuel multi-physique en SystemC-AMS / System-level modeling and simulation of microelectromechanical systems for multi-physics virtual prototyping in SystemC-AMS

Vernay, Benoît 16 June 2016 (has links)
L'évolution des systèmes embarqués se traduit aujourd'hui par des ensembles complexes, dits systèmes cyber-physiques, opérant principalement en réseau et interagissant fortement avec leur environnement.Intégrés à des circuits de contrôle et de traitement du signal, les micro-systèmes électromécaniques, ou MEMS, jouent un rôle primordial dans ces ensembles en tant que capteurs ou actionneurs.La conception de tels systèmes requiert des solutions globales et pluri-disciplinaires telles que le prototypage virtuel.Basée sur des modèles haut-niveau, cette technique permet d'anticiper le comportement du système dès les premières phases de conception et de le raffiner lors de phases plus avancées.Ces méthodes ont progressivement été appliquées à la conception de circuits intégrés, notamment avec l'utilisation de langages de description matérielle, tels que VHDL ou Verilog.En adoptant un niveau d'abstraction supérieur, SystemC a largement contribué au développement concourant des parties matérielles et logicielles.Parallèlement, les extensions proposées dans SystemC-AMS répondent au nombre croissant de composants analogiques dans les circuits intégrés et constituent une base prometteuse pour le prototypage virtuel de systèmes hétérogènes.Pour cette raison, cette thèse traite de la modélisation et de la simulation haut-niveau de dispositifs MEMS en SystemC-AMS.Dans un premier temps, nous évaluons les capacités actuelles du standard et des modèles de calcul proposés dans SystemC-AMS.Nous démontrons les limites et la difficulté d'élaborer des modèles équivalents de dispositifs MEMS dont la géométrie et les couplages internes nécessitent des descriptions plus détaillées.Nous proposons donc, dans un deuxième temps, d'intégrer directement dans SystemC-AMS des modèles réduits de dispositifs MEMS.La réduction d'ordre de modèle est une méthode mathématique permettant de créer des représentations compactes de systèmes initialement très larges en termes de degrés de liberté.Ainsi, nous utilisons les modèles générés depuis l'outil d'analyse en éléments finis \emph{MEMS+} et proposons une interface de programmation pour les insérer dans des modèles SystemC-AMS.Après avoir détaillé les principales fonctionnalités de l'interface, nous discutons les améliorations possibles du standard et de la solution présentée.Enfin, nous vérifions notre solution avec l'étude d'un accéléromètre et comparons les résultats avec l'état de l'art en termes de précision des modèles et de performances de simulation.Cette thèse propose ainsi une méthodologie complète pour intégrer des dispositifs MEMS dans un environnement de simulation haut-niveau. / Embedded systems have evolved to more complex assemblies, called Cyber-Physical Systems (CPS), mostly operating through networks and tightly interacting with the environment.As actuators or sensors, micro-electromechanical systems (MEMS) are essential elements in these systems where they are integrated along with control and signal processing units.Designing such solutions requires a multi-domain approach like virtual prototyping.Based on system-level models, this technique allows to anticipate the global behavior in early-design phases and to further refine it in more advanced steps.Integrated circuits were progressively designed with respect to this method, especially through Hardware Description Languages (HDLs) like VHDL or Verilog.By adopting a higher-abstraction degree, SystemC enabled the co-development of hardware/software specific applications.In parallel, the Analog and Mixed-Signal (AMS) extensions proposed in SystemC-AMS partly addressed the increasing amount of analog components and are considered as a promising alternative for the virtual prototyping of heterogeneous systems.To that end, this thesis addresses the system-level modeling and simulation of MEMS devices in SystemC-AMS.First, we evaluate the current capabilities of the standard and supported models of computation in SystemC-AMS.We demonstrate the limitations and the the difficulty to elaborate equivalent models of MEMS devices whose geometry and internal coupling require more detailed descriptions.Second, we propose to directly integrate MEMS reduced models in SystemC-AMS.Model-order reduction is a mathematical technique to decrease the number of degrees of freedom and generate compact models from large-scale systems.We thus integrate the reduced models exported from the finite-element analysis tool \emph{MEMS+} and propose an Application Programmable Interface (API) to insert these \textit{ad hoc} models in SystemC-AMS.After reviewing the main API features, we discuss some improvements of both the standard and the presented solution.Finally, we verify our solution through the use case of an accelerometer and compare the results with the state of the art in terms of modeling accuracy and simulation performance.This thesis introduces a framework to integrate MEMS devices with the surrounding electronics in a unified system-level simulation environment.
8

Méthode de modélisation et de raffinement pour les systèmes hétérogènes. Illustration avec le langage System C-AMS / Study and development of a AMS design-flow in SytemC : semantic, refinement and validation

Paugnat, Franck 25 October 2012 (has links)
Les systèmes sur puces intègrent aujourd’hui sur le même substrat des parties analogiques et des unités de traitement numérique. Tandis que la complexité de ces systèmes s’accroissait, leur temps de mise sur le marché se réduisait. Une conception descendante globale et coordonnée du système est devenue indispensable de façon à tenir compte des interactions entre les parties analogiques et les partis numériques dès le début du développement. Dans le but de répondre à ce besoin, cette thèse expose un processus de raffinement progressif et méthodique des parties analogiques, comparable à ce qui existe pour le raffinement des parties numériques. L'attention a été plus particulièrement portée sur la définition des niveaux analogiques les plus abstraits et à la mise en correspondance des niveaux d’abstraction entre parties analogiques et numériques. La cohérence du raffinement analogique exige de détecter le niveau d’abstraction à partir duquel l’utilisation d’un modèle trop idéalisé conduit à des comportements irréalistes et par conséquent d’identifier l’étape du raffinement à partir de laquelle les limitations et les non linéarités aux conséquences les plus fortes sur le comportement doivent être introduites. Cette étape peut être d’un niveau d'abstraction élevé. Le choix du style de modélisation le mieux adapté à chaque niveau d'abstraction est crucial pour atteindre le meilleur compromis entre vitesse de simulation et précision. Les styles de modélisations possibles à chaque niveau ont été examinés de façon à évaluer leur impact sur la simulation. Les différents modèles de calcul de SystemC-AMS ont été catégorisés dans cet objectif. Les temps de simulation obtenus avec SystemC-AMS ont été comparés avec Matlab Simulink. L'interface entre les modèles issus de l'exploration d'architecture, encore assez abstraits, et les modèles plus fin requis pour l'implémentation, est une question qui reste entière. Une bibliothèque de composants électroniques complexes décrits en SystemC-AMS avec le modèle de calcul le plus précis (modélisation ELN) pourrait être une voie pour réussir une telle interface. Afin d’illustrer ce que pourrait être un élément d’une telle bibliothèque et ainsi démontrer la faisabilité du concept, un modèle d'amplificateur opérationnel a été élaboré de façon à être suffisamment détaillé pour prendre en compte la saturation de la tension de sortie et la vitesse de balayage finie, tout en gardant un niveau d'abstraction suffisamment élevé pour rester indépendant de toute hypothèse sur la structure interne de l'amplificateur ou la technologie à employer. / Systems on Chip (SoC) embed in the same chip analogue parts and digital processing units. While their complexity is ever increasing, their time to market is becoming shorter. A global and coordinated top-down design approach of the whole system is becoming crucial in order to take into account the interactions between the analogue and digital parts since the beginning of the development. This thesis presents a systematic and gradual refinement process for the analogue parts comparable to what exists for the digital parts. A special attention has been paid to the definition of the highest abstracted analogue levels and to the correspondence between the analogue and the digital abstraction levels. The analogue refinement consistency requires to detect the abstraction level where a too idealised model leads to unrealistic behaviours. Then the refinement step consist in introducing – for instance – the limitations and non-linearities that have a strong impact on the behaviour. Such a step can be done at a relatively high level of abstraction. Correctly choosing a modelling style, that suits well an abstraction level, is crucial to obtain the best trade-off between the simulation speed and the accuracy. The modelling styles at each abstraction level have been examined to understand their impact on the simulation. The SystemC-AMS models of computation have been classified for this purpose. The SystemC-AMS simulation times have been compared to that obtained with Matlab Simulink. The interface between models arisen from the architectural exploration – still rather abstracted – and the more detailed models that are required for the implementation, is still an open question. A library of complex electronic components described with the most accurate model of computation of SystemC-AMS (ELN modelling) could be a way to achieve such an interface. In order to show what should be an element of such a library, and thus prove the concept, a model of an operational amplifier has been elaborated. It is enough detailed to take into account the output voltage saturation and the finite slew rate of the amplifier. Nevertheless, it remains sufficiently abstracted to stay independent from any architectural or technological assumption.
9

Génération de modèles de haut niveau enrichis pour les systèmes hétérogènes et multiphysiques / Generating high level enriched models for heterogeneous and muliphysics systems

Bousquet, Laurent 29 January 2014 (has links)
Les systèmes sur puce sont de plus en plus complexes : ils intègrent des parties numériques, desparties analogiques et des capteurs ou actionneurs. SystemC et son extension SystemC AMSpermettent aujourd’hui de modéliser à haut niveau d’abstraction de tels systèmes. Ces outilsconstituent de véritables atouts dans une optique d’étude de faisabilité, d’exploration architecturale etde vérification du fonctionnement global des systèmes complexes hétérogènes et multiphysiques. Eneffet, les durées de simulation deviennent trop importantes pour envisager les simulations globales àbas niveau d’abstraction. De plus, les simulations basées sur l’utilisation conjointe de différents outilsprovoquent des problèmes de synchronisation. Les modèles de bas niveau, une fois crées par lesspécialistes des différents domaines peuvent toutefois être abstraits afin de générer des modèles dehaut niveau simulables sous SystemC/SystemC AMS en des temps de simulation réduits. Une analysedes modèles de calcul et des styles de modélisation possibles est d’abord présentée afin d’établir unlien avec les durées de simulation, ceci pour proposer un style de modélisation en fonction du niveaud’abstraction souhaité et de l’ampleur de la simulation à effectuer. Dans le cas des circuits analogiqueslinéaires, une méthode permettant de générer automatiquement des modèles de haut niveaud’abstraction à partir de modèles de bas niveau a été proposée. Afin d’évaluer très tôt dans le flot deconception la consommation d’un système, un moyen d’enrichir les modèles de haut niveaupréalablement générés est présenté. L’attention a ensuite été portée sur la modélisation à haut niveaudes systèmes multiphysiques. Deux méthodes y sont discutées : la méthode consistant à utiliser lecircuit équivalent électrique puis la méthode basée sur les bond graphs. En particulier, nous proposonsune méthode permettant de générer un modèle équivalent au bond graph à partir d’un modèle de basniveau. Enfin, la modélisation d’un système éolien est étudiée afin d’illustrer les différents conceptsprésentés dans cette thèse. / Systems on chip are more and more complex as they now embed not only digital and analog parts, butalso sensors and actuators. SystemC and its extension SystemC AMS allow the high level modeling ofsuch systems. These tools are efficient for feasibility study, architectural exploration and globalverification of heterogeneous and multiphysics systems. At low level of abstraction, the simulationdurations are too important. Moreover, synchronization problems appear when cosimulations areperformed. It is possible to abstract the low level models that are developed by the specialists of thedifferent domains to create high level models that can be simulated faster using SystemC/SystemCAMS. The models of computation and the modeling styles have been studied. A relation is shownbetween the modeling style, the model size and the simulation speed. A method that generatesautomatically the high level model of an analog linear circuit from its low level representation isproposed. Then, it is shown how to include in the high level model some information allowing thepower consumption estimation. After that, the multiphysics systems modeling is studied. Twomethods are discussed: firstly, the one that uses the electrical equivalent circuit, then the one based onthe bond graph approach. It is shown how to generate a bond graph equivalent model from a low levelrepresentation. Finally, the modeling of a wind turbine system is discussed in order to illustrate thedifferent concepts presented in this thesis.
10

Simulation multi-moteurs multi-niveaux pour la validation des spécifications système et optimisation de la consommation / Multi-engine multi-level simulation for system specification validation and power consumption optimization

Li, Fangyan 29 March 2016 (has links)
Ce travail vise la modélisation au niveau système, en langage SystemC-AMS, et la simulation d'un émetteur-récepteur au standard Bluetooth Low Energy (BLE). L'objectif est d'analyser la relation entre les performances, en termes de BER et la consommation d'énergie du transceiver. Le temps de simulation d’un tel système, à partir de cas d’étude (use case) réaliste, est un facteur clé pour le développement d’une telle plateforme. De plus, afin d’obtenir des résultats de simulation le plus précis possible, les modèles « haut niveau » doivent être raffinés à partir de modèles plus bas niveau où de mesure. L'approche dite Meet-in-the-Middle, associée à la méthode de modélisation équivalente en Bande Base (BBE, BaseBand Equivalent), a été choisie pour atteindre les deux conditions requises, à savoir temps de simulation « faible » et précision des résultats. Une simulation globale d'un système de BLE est obtenue en intégrant le modèle de l'émetteur-récepteur dans une plateforme existante développée en SystemC-TLM. La simulation est basée sur un système de communication de deux dispositifs BLE, en utilisant différents scénarios (différents cas d'utilisation de BLE). Dans un premier temps nous avons modélisé et validé chaque bloc d’un transceiver BT. Devant le temps de simulation prohibitif, les blocs RF sont réécrits en utilisant la méthodologie BB, puis raffinés afin de prendre en compte les non-linéarités qui vont impacter le couple consommation, BER. Chaque circuit (chaque modèle) est vérifié séparément, puis une première simulation système (point à point entre un émetteur et un récepteur) est effectuée / This work aims at system-level modelling a defined transceiver for Bluetooth Low energy (BLE) system using SystemC-AMS. The goal is to analyze the relationship between the transceiver performance and the accurate energy consumption. This requires the transceiver model contains system-level simulation speed and the low-level design block power consumption and other RF specifications. The Meet-in-the-Middle approach and the Baseband Equivalent method are chosen to achieve the two requirements above. A global simulation of a complete BLE system is achieved by integrating the transceiver model into a SystemC-TLM described BLE system model which contains the higher-than-PHY levels. The simulation is based on a two BLE devices communication system and is run with different BLE use cases. The transceiver Bit-Error-Rate and the energy estimation are obtained at the end of the simulation. First, we modelled and validated each block of a BT transceiver. In front of the prohibitive simulation time, the RF blocks are rewritten by using the BBE methodology, and then refined in order to take into account the non-linearities, which are going to impact the couple consumption, BER. Each circuit (each model) is separately verified, and then a first BLE system simulation (point-to-point between a transmitter and a receiver) has been executed. Finally, the BER is finally estimated. This platform fulfills our expectations, the simulation time is suitable and the results have been validated with the circuit measurement offered by Riviera Waves Company. Finally, two versions of the same transceiver architecture are modelled, simulated and compared

Page generated in 0.811 seconds