• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 52
  • 8
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 223
  • 223
  • 117
  • 117
  • 55
  • 51
  • 45
  • 41
  • 21
  • 20
  • 17
  • 16
  • 16
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Geração de linhagens celulares HEK293 knockdown para as proteínas p53, ATM, mTOR e PGC1α e estudo do papel de p53 na resposta ao estresse oxidativo provocado por azul de metileno / Generation of HEK293 knockdown cell lines to the proteins p53, ATM, mTOR and PGC1α and study of the role of p53 during response to methylene blue-induced oxidative stress

Dias, Gustavo Carvalho 31 January 2014 (has links)
O DNA é um alvo constante de modificações químicas, as quais resultam na ativação dos programas de reparo de danos no DNA. O DNA mitocondrial (DNAmt), uma molécula circular contendo aproximadamente 16,6 kb de extensão, é constantemente exposto às espécies reativas de oxigênio (EROs) devido a sua proximidade da cadeia transportadora de elétrons, presente na membrana mitocondrial interna. Quase todas as vias de reparo de DNA presentes no núcleo atuam também na mitocôndria, entretanto, a regulação das vias mitocondriais não é bem compreendida. As proteínas p53, ATM, mTOR e PGC1α participam, dentre outros papéis, do controle do metabolismo energético e das respostas a lesões no DNA nuclear. Dessa forma, decidimos gerar linhagens celulares com níveis reduzidos dessas proteínas como uma ferramenta para o estudo dos seus papéis na manutenção do DNAmt. Para isso, foram geradas linhagens celulares de HEK293 expressando constitutivamente shRNAs alvo-específicos, cuja diminuição da expressão das proteínas alvo foi confirmada através de western blotting. Neste trabalho, também foi estudado o papel de p53 na resposta ao estresse oxidativo mitocondrial provocado por azul de metileno (AM). O AM é um corante fotoativo capaz de atravessar membranas biológicas e, em células de mamíferos, se acumula em organelas, tais como a mitocôndria. Uma vez que p53 participa de diversas funções celulares e transloca para a mitocôndria sob condições de estresse, onde pode induzir apoptose ou modular o reparo de DNAmt, nós investigamos se p53 está envolvido na indução de morte celular após tratamento com AM fotoativado. Para isso, foram utilizados 2 clones com níveis reduzidos de p53 obtidos na primeira etapa deste trabalho. Sob condições normais, foi demonstrado que o silenciamento de p53 induziu uma forte redução do número de cópias de DNAmt e estimulou a proliferação celular quando fornecemos glicose ou galactose como substratos energéticos. A depleção de p53, ou a sua inibição farmacológica, resultaram em uma ligeira proteção quando as células foram submetidas ao tratamento com AM. Também foi demonstrado que AM provoca morte celular apoptótica de uma maneira dependente de p53, uma vez que a depleção dessa proteína protegeu a população do acúmulo de células em sub-G1. Portanto, nossos resultados sugerem que AM induz morte celular apoptótica em células HEK293, de uma maneira dependente de p53. Esse efeito pode ser mediado diretamente por p53, ou ainda, pelo seu papel na manutenção do número de cópias do DNAmt. / DNA is constantly being chemically modified, which results in activation of the DNA damage response program. The mitochondrial DNA (mtDNA), a circular molecule of 16.6 kb in length, is primary target of reactive oxygen species (ROS) due its proximity to the electron transport chain, in the mitochondrial inner membrane. Almost all known DNA damage repair pathways operating in the nucleus were also found in the mitochondrion; however, their regulation remains not well understood. The proteins p53, ATM, mTOR e PGC1α have many cellular functions, including control of energy metabolism and cell fate after stress. Thus, we hypothesized that those proteins could participate in maintaining of mtDNA, through direct or indirect roles. To test this hypothesis, we generated isogenic knockdown cell lines to further use them to study their role in the mtDNA damage response. For that, were generated HEK293 knockdown cell lines that stably express target-specific shRNAs. Efficient knockdown was checked using western blotting. Here, we also studied the role of p53 in the cellular response to mitochondrial oxidative stress induced by methylene blue (MB). MB is a photoactive dye that crosses biological membranes due to its lypophylic character and, in mammalian cells, accumulates in organelles such as mitochondria; however, its cytotoxic mechanism is not well understood. As the p53 protein participates in several cellular functions and translocates to mitochondria under stress conditions, where it can induce apoptosis or modulate mtDNA repair, we investigated whether p53 was involved in MB + light-induced cell death using p53 knockdown clones selected from the cell lines generated in the first phase of this work. Under normal conditions, p53 knockdown caused a decrease in mtDNA copy number and stimulated cellular growth supported by either glucose or galactose. After MB treatment, p53-kd cells showed a slight decrease in cell death compared to scrambled shRNA controls. Evaluation of cell death after MB treatment, using flow cytometry analysis, indicated that MB was able to induce significant levels of apoptotic cell death, which was dependent on p53 levels. Taken together, our results suggest that MB induces cell death, probably via apoptosis, in a p53 dependent manner. This effect may be mediated by p53 directly or by its role in mtDNA copy number maintenance.
52

Au@TiO2 Nanocomposites Synthesized by X-ray Radiolysis as Potential Radiosensitizers

Molina Higgins, Maria C 01 January 2019 (has links)
Radiosensitization is a novel targeted therapy strategy where chemical compounds are being explored to enhance the sensitivity of the tissue to the effects of ionizing radiation. Among the different radiosensitizers alternatives, nanomaterials have shown promising results by enhancing tumor injury through the production of free radicals and reactive oxygen species (ROS). In this work, Gold-supported titania (Au@TiO2) nanocomposites were synthesized through an innovative strategy using X-ray irradiation, and their potential as radiosensitizers was investigated. Radiosensitization of Au@TiO2 nanocomposites was assessed by monitoring the decomposition of Methylene Blue (MB) under X-ray irradiation in the presence of the nanomaterial. Radiosensitization of Au@TiO2 was thoroughly investigated as a function of parameters such as Au loading, TiO2 particle size, nanomaterial concentration, different irradiation voltages, and dose rates. Results showed that the presence of Au@TiO2 increases significantly the absorbed dose, thus enhancing MB decomposition. The mechanism behind Au@TiO2 radiosensitization relies on their interaction with X-rays. TiO2 produces reactive ROS whereas Au leads to the generation of photoelectrons and Auger electrons upon exposure to X-rays. These species lead to an enhanced degradation rate of the dye, a feature that could translate to cancerous cells damage with minimal side effects. The radiosensitization effect of Au@TiO2 nanocomposites was also tested in biological settings using Microcystis Aeruginosa cells. The results showed an increase in cell damage when irradiated in the presence of Au@TiO2 nanocomposites. Au@TiO2 nanocomposites were fabricated using X-ray radiolytic synthesis, a method that diverges from conventional fabrication processes and leads to negligible by-product formation, an important feature for medical and catalytic applications. In this work, Au nanoparticles are supported on TiO2 with a mean particle size of either 6.5 nm or 21.6 nm, using different ligands such as NaOH or urea, and under different absorbed doses to determine the effects of these parameters on the nanomaterials’ characteristics. Overall, Au@TiO2 synthesized by X-rays showed remarkable promise as radiosensitizers, a concept relevant to a number of medical, biological and environmental applications.
53

Preparation Of Boron-zirconium Co-doped Photocatalytic Titanium Dioxide Powder

Tokmakci, Tolga 01 January 2013 (has links) (PDF)
A titanium dioxide powder co-doped with boron and zirconium was prepared by mechanical ball milling. Photocatalytic performance of the powder was evaluated by degradation of methylene blue (MB) solution under UV illumination. XRD patterns were refined by Rietveld analysis method to obtain accurate lattice parameters and position of the atoms in the crystal structure of TiO2. XRD analysis indicated that the B and/or Zr doped TiO2 powders composed of anatase and did not exhibit any additional phase. Rietveld analysis suggested that dopant B and Zr elements were successfully weaved into crystal structure and distorted the lattice of TiO2. The highest distortion was obtained by co-doping. SEM investigations confirmed that mechanical ball milling technique led to a decrease in particle size of TiO2 powder. XPS analysis revealed that dopant B and Zr atoms did not appear in any form of compound including Ti and O elements. Results of photocatalytic activity test suggested that boron and zirconium co-doped TiO2 particles exhibited a better visible light response and photocatalytic activity than that of mono element doped TiO2 (i.e. B-TiO2 and Zr-TiO2) and undoped TiO2 particles. A 20% improvement in photocatalytic activity of reference TiO2 powder (powder ball milled without dopant addition) was achieved by B and Zr co-doping. The enhanced photocatalytic activity is attributed to synergistic effects of B-Zr co-doping the lattice of TiO2 as well as particle size reduction.
54

Optimizing Biofuel Cell Performance Using a Targeted Mixed Mediator Combination

Klar, Jason C. 27 March 2006 (has links)
A study of how mediators interact with the catabolic pathways of microbes was undertaken with a view towards improving the performance of microbial fuel cells. The use of mediators is known to improve the power density in microbial fuel cells, but this work suggests that no single mediator is ideally suited to the task. Instead, a carefully selected mixture of two targeted mediators (Methylene Blue and Neutral Red) might be optimal. To test this hypothesis, a yeast-catalyzed microbial fuel cell was built and empirically evaluated under different mediation conditions while keeping all other parameters constant. The results clearly show that an appropriate mix of the two mediators mentioned could indeed achieve significantly superior performance, in terms of power-density, than when either mediator is used singly. All tests were carried out using the same overall mediator concentration.
55

Revamping aggregate property requirements for portland cement concrete

Stutts, Zachary William 18 June 2012 (has links)
Current Texas Department of Transportation (TxDOT) procedures for evaluating coarse aggregate for portland cement concrete (PCC) have been in place for over 39 years. Item 421 in the TxDOT "Standard Specifications for Construction and Maintenance of Highways, Streets, and Bridges" describes the tests and test limits that must be met by aggregates before they can be approved for use in portland cement concrete applications. The intention of Item 421 is to ensure that only strong, durable aggregates are used in concrete so that the life of concrete is not cut short by common distress mechanisms which ultimately lead to costly repairs and replacements. The two main tests currently used by TxDOT to evaluate aggregates are the magnesium sulfate soundness test and the Los Angeles abrasion and impact test. These tests are meant to characterize the overall soundness and resistance to abrasion and impact of an aggregate respectively. Unfortunately, past research has shown that the magnesium sulfate soundness and test and the Los Angeles abrasion and impact test are not able to successfully predict the field performance of an aggregate in concrete. The requirements of item 421 have thus far done a reasonably good job of ensuring long-lasting concrete; however the current tests and test limits may be unnecessarily precluding the use of some local materials. As high quality aggregate sources are depleted and transportation costs increase, it will become more necessary to distinguish good performers from marginal and poor performers in the future. If aggregate tests can be found that demonstrate better correlations with field performance, it may be possible to use more local aggregate sources and still provide the desired level of reliability for pavements, bridges, and other TxDOT concrete applications. Researchers are in the processing of collecting coarse and fine aggregates commonly used in Texas and testing these aggregates on a variety of alternative tests. Researchers will attempt to relate this test data to concrete behavior and ultimately recommend tests for improved TxDOT aggregate specifications. / text
56

Metabolic impairment of the posterior cingulate cortex and reversal by methylene blue: a novel model and treatment of early stage Alzheimer's disease / Novel model and treatment of early stage Alzheimer's disease

Riha, Penny Denise, 1975- 29 August 2008 (has links)
Alzheimer's disease (AD) is associated with decreased brain energy metabolism. Hypometabolism in the posterior cingulate cortex (PCC) occurs before the onset of memory deficits in subjects at genetic risk for AD who are not yet cognitively impaired. There is a specific inhibition in cytochrome oxidase (C.O.) in the PCC, an area involved in spatial navigation. Creating an animal model that exhibits the early pathophysiology of AD is important for developing and testing drugs that could reverse memory problems associated with such deficits. Methylene blue (MB) is a compound that improves C.O. activity and memory retention in rats. This dissertation had three specific aims: 1) to examine if isolated PCC hypometabolism causes spatial memory deficits in rats; 2) to find a dose of MB that improves memory without nonspecific behavioral effects; and 3) to prevent memory deficits from PCC hypometabolism with low dose MB. PCC hypometabolism was produced by focal administration of sodium azide, an inhibitor of C.O. activity. PCC hypometabolism resulted in impaired spatial memory in a hole board food-search task, increased oxidative damage, and neurotoxicity in the PCC. In addition, PCC hypometabolism resulted in reduced inter-regional correlations in brain activity. Our second set of studies examined the dose-response effects of MB. Our findings demonstrated that a low dose of MB: 1) enhanced memory in open field habituation and object recognition tasks; 2) did not affect general locomotor activity, exploration, motivation, or anxiety; and 3) increased brain oxygen consumption 24 hr after in vivo administration. Finally, our last study found that low dose MB prevented the deficits caused by PCC hypometabolism. MB did not prevent PCC inhibition or cell loss caused by sodium azide. Inter-regional correlations of brain metabolic activity suggested that rats treated with MB were using a different, but equally efficient, strategy for memory retrieval. This animal model of C.O. hypometabolism in the PCC can provide information to understand the mechanisms that regulate early pathological degeneration and reveal new therapeutic strategies aimed at reducing or preventing cognitive decline. Studies of low dose MB in humans are needed to examine its effects in AD patients.
57

Functional neural networks underlying latent inhibition and the effects of the metabolic enhancer methylene blue

Puga, Frank 02 December 2010 (has links)
The present research reports the first comprehensive map of brain networks underlying latent inhibition learning, the first application of structural equation modeling to cytochrome oxidase data, and the first effects of methylene blue, a known metabolic enhancer, on latent inhibition. In latent inhibition, repeated exposure to a stimulus results in a latent form of learning that inhibits subsequent associations with that stimulus. As neuronal energy demand to form learned associations changes, so does the induction of the respiratory enzyme cytochrome oxidase. Therefore, cytochrome oxidase can be used as an endpoint metabolic marker of the effects of experience on regional brain metabolic capacity. Quantitative cytochrome oxidase histochemistry was used to map brain regions in mice trained on a tone-footshock fear conditioning paradigm with either tone preexposure (latent inhibition), conditioning only (acquisition), conditioning followed by tone alone (extinction), or no handling or conditioning (naïve). In normal latent inhibition, the ventral cochlear nucleus, medial geniculate, CA1 hippocampus, and perirhinal cortex showed modified metabolic capacity due to latent inhibition. Structural equation modeling was used to determine the causal influences in an anatomical network of these regions and others thought to mediate latent inhibition, including the accumbens and entorhinal cortex. An uncoupling of ascending influences between auditory regions was observed in latent inhibition. There was also a reduced influence on the accumbens from the perirhinal cortex in both latent inhibition and extinction. These results suggest a specific network with a neural mechanism of latent inhibition that involves sensory gating, as evidenced by modifications in metabolic capacity, effective connectivity between auditory regions, and reduced hippocampal influence on the accumbens. The effects of methylene blue on disrupted latent inhibition were also investigated. Reduced tone-alone presentations disrupted the latent inhibition effect and led to an increase in freezing behavior. Repeated low-dose administration of methylene blue decreased freezing levels and facilitated the disrupted latent inhibition effect. Methylene blue administration also resulted in changes in metabolic capacity in limbic and cortical regions. A unique functional neural network was found in methylene blue-restored latent inhibition that emphasized sensory gating of auditory information, attention processing, and cortical inhibition of behavior. / text
58

The role of the NO-cGMP pathway as a putative target in antidepressant action / Renché Retief

Retief, Renché January 2004 (has links)
Depressive disorders are among the most frequent psychiatric diseases in the Western world with prevalence between 9% and 18%. Poor compliance and inappropriate antidepressant discontinuation invokes long-term morbidity, and appear linked to hippocampal shrinkage. Despite major advances in pharmacological treatment of the illness over the past 3040 years, currently available agents have distinct shortfalls both in clinical efficacy and in maintenance of response. This implies a greater long-term morbidity with significant impact on the patient, the patient's family as well as economic implications to health care managers and providers. The major reason for this state of affairs is our poor understanding of the neurobiology of depression and hence, of antidepressant (AD) action. AD drugs are thus not addressing the crucial neurobiological target underlying the illness, and new strategies and treatments are urgently needed. In recent years, depression has been associated with disturbances in excitotoxic glutamatergic activity, yet this has not been systematically evaluated. While the role of neurotransmitters such as serotonin, noradrenaline and dopamine has been extensively studied, new evidence suggests a role for the unique neurotransmitter nitric oxide (NO). Nitric oxide (NO), is activated by glutamatergic systems in various limbic and other regions of the brain, and has recently also been implicated in anxiety and affective disorders. Of special interest is the putative role of NO in cellular memory, synaptic plasticity and cell survival, all-important processes in the neuropathology and neurodevelopment of depression. Recent clinical studies have provided evidence of the role of the NO-pathway in depression, while preclinical studies have demonstrated the anxiolytic and antidepressant actions of nitric oxide synthase (NOS)-inhibitors. Moreover, NO interacts with other classical transmitters that have a regulatory role on mood, particularly the monoamines, as well as glutamate and gammaaminobutyric acid (GABA). In the current study the role of the NO-cGMP pathway in AD action was investigated, after chronic imipramine (IMI) and after IMI withdrawal, using a learned helplessness paradigm. Behavioural changes, hippocampal NOS activity and cGMP accumulation was determined together with pharmacological manipulation of the NO-cGMP pathway. Chronic IMI, 15 mg/kg/day intraperitoneal (ip) administration induced a pronounced reduction in swim immobility time in the forced swim test (FST), with no effect on horizontal or vertical locomotor activity. These behavioural changes were accompanied by a significant reduction in NOS enzyme activity and cGMP accumulation. In order to confirm the involvement of the NO-cGMP pathway in the AD action of IMI, chronic (3 weeks) IMI treatment was followed by an acute withdrawal of 7 days. Acute withdrawal, after chronic IMI treatment, resulted in a significant increase in swim immobility time and an increase in NOS enzyme activity and cGMP levels. In fact, NOS activity was raised above that of control, not just higher than the effect of chronic IMI. In order to assess the possible role of the NMDA-NO-cGMP pathway in AD withdrawal, the NMDA receptor antagonist, memantine, and the NOS/guanylyl cyclase (GC) inhibitor, methylene blue (MB), were administered during the 7 day IMI withdrawal period. Memantine (5 mg/kg/d ip), during the 7 day IMI withdrawal period, significantly reversed the increase in immobility time evoked after IMI withdrawal. This was accompanied by a significant reduction in NOS enzyme activity and a tendency to decrease cGMP levels. This data confirms that the antidepressant action of IMI, as well as IMI withdrawal, is associated with actions on the NMDA-GIu-NO-cGMP pathway. Particularly. IMI withdrawal evokes an increase in glutamate activity that is responsible for NOS activation. During the 7 day IMI withdrawal period, MB (15 mg/kg/d ip) also significantly reversed the increased immobility time after IMI withdrawal and was accompanied by a tendency to decrease NOS enzyme activity and cGMP levels in the rat hippocampus, however statistical significance was not reached. Although not emphatic, this data implies a possible role of the NO-cGMP pathway in AD action and AD withdrawal. In order to determine whether the observed IMI withdrawal effects on the NO-cGMP pathway may occur through an initial destabilisation in the serotonergic system, the 5-HT2a/2c receptor antagonist, ritanserin (4 mg/kg/d ip), was administered during the IMI withdrawal period. These studies revealed that antidepressant withdrawal evokes an increase in 5-HT2-mediated activity, and that antidepressant-induced NOS activation after withdrawal has its origin in serotonergic hyperactivity. Clearly, this is supportive of a distinct relationship between the NO and serotonergic system in antidepressant response. On its own, ritanserin was found to increase NOS and cGMP levels, yet during IMI withdrawal this response was lost, suggesting that IMI withdrawal alters the response to a 5-HT2a/2c receptor antagonist, which may have major clinical implications. In conclusion, the AD action of IMI, as well as chronic IMI withdrawal, involves actions on the NO-cGMP pathway. Withdrawal of ADS is associated with a loss of AD efficacy together with an increase in release of NO and cGMP. The NMDA antagonist, memantine, and the NOS/GC inhibitor, MB, reversed these responses therefore suggesting that the NMDA-GIu-NO-cGMP pathway may be a new putative target in understanding the neurobiology of AD action. Finally, NOS activation following withdrawal suggest that inappropriate withdrawal during the treatment of depression may mediate neurodegenerative pathology observed in recurrent depression, possibly by severely increased hippocampal NOS activity which is toxic to neurons. / Thesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2005.
59

Linking Molecular Microbiology and Geochemistry to Better Understand Microbial Ecology in Coastal Marine Sediments

Reese, Brandi Kiel 2011 December 1900 (has links)
The overall objective of the research presented here was to combine multiple geochemical parameters and molecular characterizations to provide a novel view of active microbial community ecology of sediments in a large-river deltaic estuary. In coastal and estuarine environments, a large portion of benthic respiration has been attributed to sulfate reduction and implicated as an important mechanism in hypoxia formation. The use of high-resolution sampling of individual sediment cores and high throughput nucleic acid extraction techniques combined with 454 FLX sequencing provided a robust understanding of the metabolically active benthic microbial community within coastal sediments. This was used to provide further understanding and show the importance of simultaneously analyzing the connectivity of sulfur and iron cycling to the structure and function of the microbial population. Although aqueous sulfide did not accumulate in the sediments of the northern Gulf of Mexico, active sulfate reduction was observed in all locations sampled. Microbial recycling and sequestration as iron sulfides prevented the release of sulfide from the sediment. Prominent differences were observed between the sample locations and with depth into the sediment column. This study emphasized the importance of combining novel molecular techniques with simultaneous traditional geochemical measurements to show the interdependence of microbiology and geochemistry. In addition, this study highlights the need to consider microbial community biogeography along with small-scale variations in geochemistry and biology that impact the overall cycling of redox elements when constructing biogeochemical models in marine sediments.
60

The antidepressant properties of selected methylene blue analogues / Anzelle Delport

Delport, Anzelle January 2014 (has links)
The shortcomings of current antidepressant agents prompts the design of novel multimodal antidepressants and the identification of new antidepressant targets, especially those located at sub-cellular level. Such antidepressants should possess improved response rates as well as safety profiles. Methylene blue (MB) is reported to possess diverse pharmacological actions and is attracting increasing attention for the treatment of a variety of disorders including Alzheimer’s disease, bipolar disorder, anxiety and depression. MB acts on both monoamine oxidase (MAO) and the nitric oxide (NO)-cGMP pathway, and possesses antidepressant activity in rodents. The principal goal of this study was to design a close structural analogue of MB and to evaluate the effects of these structural changes on MAO inhibition, a well-known antidepressant target. Furthermore, MAO inhibition is also responsible for cardiovascular toxicity in clinically used MAOI inhibitors. For this purpose we investigated the antidepressant properties of the synthetic MB analogue (ethyl-thioniniumchloride; ETC) as well as azure B, the major metabolite of MB, in the forced swim test (FST). ETC was synthesized with a high degree of purity from diethyl-p-phenylenediamine with 6% yield. ETC was firstly evaluated as a potential inhibitor of recombinant human MAO-A and MAO-B. Azure B and ETC were evaluated over a dosage range of 4-30 mg/kg for antidepressant-like activity in the acute FST in rats, and the results were compared to those obtained with saline, imipramine (15 mg/kg) and MB (15 mg/kg) treated rats. Locomotor activity was evaluated to ensure that changes in swim motivation are based on antidepressant response and not due to an indirect effect of the drug on locomotor activity. The results document that ETC inhibits MAO-A and MAO-B with IC50 values of 0.51 μM and 0.592 μM, respectively. Furthermore, ETC inhibits MAO-A and MAO-B reversibly, while the mode of inhibition is most likely competitive. In the acute FST, azure B and ETC were more effective than imipramine and MB in reversing immobility, without inducing locomotor effects. Azure B and ETC increased swimming behaviour during acute treatment, which is indicative of enhanced serotonergic neurotransmission. Azure B and ETC did not affect noradrenergicmediated climbing behaviour. These results suggest that azure B may be a contributor to the antidepressant effect of MB, and acts via increasing serotonergic transmission. Secondly, small structural changes made to MB do not abolish its antidepressant effect even though ETC is a less potent MAO-A inhibitor than MB. / MSc (Pharmaceutical Chemistry), North-West University, Potchefstroom Campus, 2014

Page generated in 0.0162 seconds