• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 45
  • 27
  • 17
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 220
  • 52
  • 51
  • 50
  • 41
  • 32
  • 30
  • 29
  • 28
  • 25
  • 21
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Estudo do efeito magnetohidrodinâmico em um eletrólito a partir do uso de um dispositivo ejetor eletromagnético / Study of MHD effect on an electrolyte solution, using an electromagnetic ejector device

Aoki, Luciano Pires 18 July 2011 (has links)
A magnetohidrodinâmica, ou simplesmente MHD, é um campo da ciência que estuda os movimentos de fluidos condutores submetidos a forças eletromagnéticas e une conceitos da fluidodinâmica e eletromagnetismo. Nos últimos anos, a MHD vem sendo aplicada em diversas áreas tecnológicas, desde a propulsão eletromagnética até dispositivos biológicos. Neste trabalho, são mostradas a construção e a operação de um dispositivo MHD, um canal retangular preenchido com um fluido eletrolítico conhecido como macrobomba, isento de partes mecânicas móveis. Os imãs geram um campo magnético externo e os eletrodos criam um campo elétrico, perpendicular ao escoamento, que move o fluido. O modelo MHD é calculado a partir das equações de Navier Stokes acopladas às equações de Maxwell para um fluido incompressível newtoniano. As forças eletromagnéticas que surgem resultam do produto vetorial da densidade de corrente e da densidade de fluxo magnético - essa é a força de Lorentz. Os resultados são apresentados em simulações 3D numéricas, assim como em dados experimentais. O objetivo é relacionar o campo magnético com o elétrico e com a quantidade de movimento produzida, e calcular a densidade de corrente e o perfil de pressão e de velocidade. Um perfil U e M de pressões e velocidades é esperado no experimento. Dados experimentais e computacionais são comparados para validação e posterior uso para futuros trabalhos. / Magnetohydrodynamics or simply (MHD) is a field of science that studies the movement of conductive fluids subjected to electromagnetic forces. Such a phenomenon brings together concepts of fluid dynamics and electromagnetism. Over the years, MHD has been encountered in a wide area of technological applications electromagnetic propulsion to biological devices. The present work didactically shows the construction (materials and equipment) and operation of an MHD device; a rectangular closed circuit filled with an electrolyte fluid, known as macro pumps, where a permanent magnet generates a magnetic field and electrodes generate the electric field, perpendicular to the flow, moving the fluid. The MHD model has been derived from the Navier-Stokes equation and coupled with the Maxwell equations for Newtonian incompressible fluid. Electric and magnetic components engaged in the test chamber assist in creating the propulsion of the electrolyte fluid. The electromagnetic forces that arise are due to the cross product between the vector density of current and the vector density of magnetic field applied. This is the Lorentz force. Results are present of 3D numerical MHD simulation for Newtonian fluid as well as experimental data. The goal is to relate the magnetic field with the electric field and the amounts of movement produced, and calculate de current density and fluid´s pressure and velocity. An u-shaped and m-shaped velocity and pressure profiles are expected in the experiment. Computational and experimental data are compared for validation and future analysis.
22

Estudo de perfis de pressão no Tokamak TCABR / Investigation of pressure profiles in the TCABR tokamak

Ronchi, Gilson 30 January 2017 (has links)
Resumo O conhecimento dos parâmetros macroscópicos do plasma, tais como a densidade e temperatura, bem como sua evolução e dependência espacial são fundamentais para a compreensão e controle do plasma. Esses parâmetros são essenciais para descrição dos eventos associados a fenômenos de transporte, atividade MHD, estudos de regime de confinamento melhorado (modo H), entre outros. O perfil de temperatura e densidade de íons e elétrons caracteriza um parâmetro extremamente importante em plasmas termonucleares que é o perfil de pressão. Para obter esses perfis foram utilizados os principais diagnósticos disponíveis no tokamak TCABR: espalhamento Thomson, interferometria, reflectometria, ECE e diagnósticos espectroscópicos. O espalhamento Thomson é capaz de determinar o perfil de temperatura e densidade eletrônica durante o disparo; já o diagnóstico ECE é capaz de medir a temperatura eletrônica sob certas condições de descargas. Já os diagnósticos de interferometria e reflectometria medem a densidade eletrônica integrada e a densidade eletrônica local, respectivamente. Por fim, o perfil de temperatura iônica pode ser estimado através do alargamento Doppler das linhas de emissão de impurezas. Tais dados são usados para reconstrução do perfil de pressão, em diferentes tipos de descargas no tokamak, bem como possibilitar a reconstrução do equilíbrio. Não obstante, esses diagnósticos podem fornecer informações como estimativa do Z efetivo do plasma, da velocidade de rotação, e das condições que promovem disrupção no TCABR / The knowledge of the plasma macroscopic parameters such as density and temperature as well as their temporal and spatial evolution are fundamental to the understanding and control of the plasma. These parameters are essential for description of events associated with transport phenomena, magnetohydrodynamics (MHD) activity, improved confinement studies (H mode), among others. The temperature and density profiles of electrons and ions define an extremely important parameter in thermonuclear plasmas that is the pressure profile. To measure these profiles we used all the main diagnostics available in the TCABR tokamak: Thomson scattering, interferometry, reflectometry, ECE and spectroscopic diagnostics. The Thomson scattering is able to determine the local electron temperature and density in the plasma discharge; ECE diagnostic is also able to measure the local electron temperature under certain plasma discharge conditions. And the interferometric and reflectometric diagnostics measure the line-integrated electronic density and the local electronic density, respectively. Finally, the ion temperature profile can be estimated by the Doppler broadening of the impurity line emissions. These data are used to reconstruct the pressure profile in different types of discharges in tokamak, and to enable the MHD equilibrium reconstruction. Nevertheless, these analyzes can provide information to estimate the plasma Z effective, plasma rotation velocity, and the conditions that promote the disruption in the TCABR.
23

Estudo espectral das instabilidades MHD no tokamak TCABR / Spectral study of MHD instabilities in the TCABR tokamak

Theodoro, Victor Cominato 11 September 2013 (has links)
Neste trabalho foram estudadas instabilidades magnetohidrodinâmicas (MHD) utilizando um novo sistema bolométrico que foi instalado no tokamak TCABR para medidas da evolução temporal da potência irradiada. Este novo sistema conta com 24 cordas verticais, capazes de mapear toda uma secção poloidal da coluna de plasma com resolução espacial de aproximadamente 2 cm e uma resolução temporal de 20 µs. Como se sabe, as instabilidades MHD degradam o connamento do plasma e modicam a topologia das superfícies magnéticas, causando a perda da energia do plasma. Por conta disso, compreender essas instabilidades é fundamental para o sucesso dos futuros reatores de fusão nuclear. As perturbações (oscilações) causadas pelas instabilidades MHD modulam diversos parâmetros macroscópicos do plasma como a densidade, a temperatura e a potência irradiada. Então, utilizando o diagnóstico bolométrico, é possível medir as oscilações no perl de potência irradiada e, a partir deles, extrair informações importantes para determinar a origem e as características de tais instabilidades. No tokamak TCABR, as instabilidades foram caracterizadas através da análise espectral dos 24 sinais provenientes do novo sistema bolométrico. Para auxiliar a caracterização das instabilidades, um programa foi desenvolvido em Matlab para simular as medidas das perturbações no perl de potência irradiada. Através do mesmo procedimento de análise espectral, os resultados simulados foram comparados aos experimentais de forma que os parâmetros simulados, como largura e posição das ilhas magnéticas, fossem ajustados aos experimentais. Através dessa metodologia de análise, que combina simulação e experimento, foi possível caracterizar diversas instabilidades como o precursor dos dentes de serra e ilhas magnéticas de modos m = 2 e m = 3. / In this dissertation, magnetohydrodynamic (MHD) instabilities were investigated using a new bolometric system that was installed in the TCABR tokamak for radiation power measurements. This diagnostic is composed by 24 vertical chords that provide a full view of the poloidal cross section of the plasma column and provides spatial and temporal proles with approximately 2 cm space and 20 µs time resolution. As it is well known, the MHD instabilities degrade the plasma connement and modify the magnetic topology, leading to energy loss from the plasma. Therefore, the understanding of these instabilities is essential for the success of the controlled thermonuclear fusion reactors. The MHD instabilities also cause perturbations (oscillations) in various macroscopic parameters, such as plasma density, temperature, and radiated power. Therefore, the oscillations in the radiated power prole measured by the bolometric diagnostic system provide a possibility to investigate the origin and features of the instabilities. In the TCABR tokamak, the instabilities were characterized by spectral analysis of the 24 vertical chords of the bolometric signals. In addition, a Matlab program was developed to simulate the integral characteristic of the oscillations in the radiated power measured by the bolometric system. The spectral analysis of the simulated signals is then compared with the spectral analysis of the bolometric signals. The simulated parameters, island width and radial position, were then adjusted to t the experimental spectrum results. Using this method of analysis, which combines experiment and simulation, it was possible to characterize various instabilities, such as sawtooth precursor and m = 2 and m = 3 magnetic islands.
24

Estudo de perfis de pressão no Tokamak TCABR / Investigation of pressure profiles in the TCABR tokamak

Gilson Ronchi 30 January 2017 (has links)
Resumo O conhecimento dos parâmetros macroscópicos do plasma, tais como a densidade e temperatura, bem como sua evolução e dependência espacial são fundamentais para a compreensão e controle do plasma. Esses parâmetros são essenciais para descrição dos eventos associados a fenômenos de transporte, atividade MHD, estudos de regime de confinamento melhorado (modo H), entre outros. O perfil de temperatura e densidade de íons e elétrons caracteriza um parâmetro extremamente importante em plasmas termonucleares que é o perfil de pressão. Para obter esses perfis foram utilizados os principais diagnósticos disponíveis no tokamak TCABR: espalhamento Thomson, interferometria, reflectometria, ECE e diagnósticos espectroscópicos. O espalhamento Thomson é capaz de determinar o perfil de temperatura e densidade eletrônica durante o disparo; já o diagnóstico ECE é capaz de medir a temperatura eletrônica sob certas condições de descargas. Já os diagnósticos de interferometria e reflectometria medem a densidade eletrônica integrada e a densidade eletrônica local, respectivamente. Por fim, o perfil de temperatura iônica pode ser estimado através do alargamento Doppler das linhas de emissão de impurezas. Tais dados são usados para reconstrução do perfil de pressão, em diferentes tipos de descargas no tokamak, bem como possibilitar a reconstrução do equilíbrio. Não obstante, esses diagnósticos podem fornecer informações como estimativa do Z efetivo do plasma, da velocidade de rotação, e das condições que promovem disrupção no TCABR / The knowledge of the plasma macroscopic parameters such as density and temperature as well as their temporal and spatial evolution are fundamental to the understanding and control of the plasma. These parameters are essential for description of events associated with transport phenomena, magnetohydrodynamics (MHD) activity, improved confinement studies (H mode), among others. The temperature and density profiles of electrons and ions define an extremely important parameter in thermonuclear plasmas that is the pressure profile. To measure these profiles we used all the main diagnostics available in the TCABR tokamak: Thomson scattering, interferometry, reflectometry, ECE and spectroscopic diagnostics. The Thomson scattering is able to determine the local electron temperature and density in the plasma discharge; ECE diagnostic is also able to measure the local electron temperature under certain plasma discharge conditions. And the interferometric and reflectometric diagnostics measure the line-integrated electronic density and the local electronic density, respectively. Finally, the ion temperature profile can be estimated by the Doppler broadening of the impurity line emissions. These data are used to reconstruct the pressure profile in different types of discharges in tokamak, and to enable the MHD equilibrium reconstruction. Nevertheless, these analyzes can provide information to estimate the plasma Z effective, plasma rotation velocity, and the conditions that promote the disruption in the TCABR.
25

Estudo do efeito magnetohidrodinâmico em um eletrólito a partir do uso de um dispositivo ejetor eletromagnético / Study of MHD effect on an electrolyte solution, using an electromagnetic ejector device

Luciano Pires Aoki 18 July 2011 (has links)
A magnetohidrodinâmica, ou simplesmente MHD, é um campo da ciência que estuda os movimentos de fluidos condutores submetidos a forças eletromagnéticas e une conceitos da fluidodinâmica e eletromagnetismo. Nos últimos anos, a MHD vem sendo aplicada em diversas áreas tecnológicas, desde a propulsão eletromagnética até dispositivos biológicos. Neste trabalho, são mostradas a construção e a operação de um dispositivo MHD, um canal retangular preenchido com um fluido eletrolítico conhecido como macrobomba, isento de partes mecânicas móveis. Os imãs geram um campo magnético externo e os eletrodos criam um campo elétrico, perpendicular ao escoamento, que move o fluido. O modelo MHD é calculado a partir das equações de Navier Stokes acopladas às equações de Maxwell para um fluido incompressível newtoniano. As forças eletromagnéticas que surgem resultam do produto vetorial da densidade de corrente e da densidade de fluxo magnético - essa é a força de Lorentz. Os resultados são apresentados em simulações 3D numéricas, assim como em dados experimentais. O objetivo é relacionar o campo magnético com o elétrico e com a quantidade de movimento produzida, e calcular a densidade de corrente e o perfil de pressão e de velocidade. Um perfil U e M de pressões e velocidades é esperado no experimento. Dados experimentais e computacionais são comparados para validação e posterior uso para futuros trabalhos. / Magnetohydrodynamics or simply (MHD) is a field of science that studies the movement of conductive fluids subjected to electromagnetic forces. Such a phenomenon brings together concepts of fluid dynamics and electromagnetism. Over the years, MHD has been encountered in a wide area of technological applications electromagnetic propulsion to biological devices. The present work didactically shows the construction (materials and equipment) and operation of an MHD device; a rectangular closed circuit filled with an electrolyte fluid, known as macro pumps, where a permanent magnet generates a magnetic field and electrodes generate the electric field, perpendicular to the flow, moving the fluid. The MHD model has been derived from the Navier-Stokes equation and coupled with the Maxwell equations for Newtonian incompressible fluid. Electric and magnetic components engaged in the test chamber assist in creating the propulsion of the electrolyte fluid. The electromagnetic forces that arise are due to the cross product between the vector density of current and the vector density of magnetic field applied. This is the Lorentz force. Results are present of 3D numerical MHD simulation for Newtonian fluid as well as experimental data. The goal is to relate the magnetic field with the electric field and the amounts of movement produced, and calculate de current density and fluid´s pressure and velocity. An u-shaped and m-shaped velocity and pressure profiles are expected in the experiment. Computational and experimental data are compared for validation and future analysis.
26

MHD equilibrium in Tokamaks with reversed current density / Equilíbrio MHD em tokamaks com densidade de corrente reversa

Taborda, David Ciro 21 September 2012 (has links)
In the present work, Current Reversal Equilibrium Configurations (CRECs) in the context of Magnetohydrodinamic (MHD) equilibrium are considered. The hamiltonian nature of the magnetic field lines is used to introduce the concept of magnetic surfaces and their relation to the Grad-Shafranov (G-S) equation. From a geometrical perspective and the Maxwell equations, it is shown that current reversal configurations in two-dimensional equilibrium do not generate the usual nested topology of the equilibrium magnetic surfaces. The concept of intersecting critical curves is introduced to describe the CRECs and recently published equilibria are shown to be compatible with such description. The equilibrium with a single magnetic island is constructed analytically, through a local successive approximations method, valid for any choice of the source functions of the G-S equation. From the local solution, an estimate of the island width in terms of simple quantities is deduced and verified to a good accuracy with recently published CRECs; the accuracy of this simple model suggests the existence of strong topological constraints in the formation of the equilibria. Lastly, an instability mechanism is conjectured to explain the lack of conclusive experimental evidence of reversed currents, in favor of the current clamp hypothesis. / No presente trabalho, as configurações de equilíbrio com corrente reversa (CRECs), são consideradas no contexto de Equilíbrio Magnetoidrodinâmico. A natureza hamiltoniana das linhas de campo magnético é usada para introduzir o conceito de superfícies magnéticas, e sua relação com a equação de Grad-Shafranov (G-S). Desde uma perspectiva geométrica e usando as equações de Maxwell, é demonstrado que as configurações de corrente reversa em equilíbrios bidimensionais não é compativel com as topologias aninhadas usuais para as superfícies magnéticas de equilíbrio. O conceito de curvas críticas é introduzido para descrever as CRECs e é observado que os equilíbrios recentemente publicados satisfazem esta descrição. O equilíbrio com uma única ilha magnética é construído analiticamente, por meio de aproximações sucessivas locais, este é válido para qualquer escolha das funções arbitrárias da equação G-S. A partir da solução local, se desenvolve uma estimativa do tamanho da ilha magnética em termos de quantidades simples. Esta estimativa concorda bem com as CRECs da literatura recente, sugerindo pela simplicidade do modelo, que existem fortes restrições topológicas no estabelecimento do equilíbrio. Finalmente, na forma de conjectura, introduzimos um mecanismo para instabilidades que tenta dar conta da falta de evidência experimental conclusiva em relação às CRECs em favor da hipótese de corrente unidirecional (current clamp).
27

Etude des cycles d'hystérésis dans les binaires X à trou noir : application à l'objet GX 339-4 / Hysteresis cycles in X-ray binaries

Marcel, Grégoire 19 October 2018 (has links)
Les cycles d’hysteresis des binaires X lors de leurs sursauts restent inexpliqués a ce jour. Dans ce travail, nous avons développé les idées du paradigme propose par Ferreira et al. (2006), ou la matière dans le disque accrète de deux manières différentes. Dans le mode standard (SAD, Shakura et Sunyaev 1973), le couple turbulent transporte le moment cinétique radialement vers l’extérieur du disque. Dans le mode éjectant (JED, Ferreira et Pelletier 1995), le disque magnetise produit des jets qui emporte la matière, l’énergie et le moment angulaire verticalement. Dans ce cadre, la transition entre les deux modes est liée a la distribution de champ magnétique dans le disque, une inconnue. Pendant cette thèse, j’ai développé un code capable de résoudre a chaque rayon dans un disque l’équilibre thermique a deux températures pour de multiples jeu de paramètres. Ce code utilise Belm (Belmont et al. 2008 ; Belmont 2009) pour traiter le refroidissement radiatif et créer les spectres de manière auto-cohérente. Les processus de chauffage sont analytiques, ainsi que les processus d’advection, qui sont calcules de l’interieur vers l’exterieur.Grace a ce code, nous avons pu montrer que des solutions de JED reproduisaient très bien les états hard jusqu’à 0.5 luminosités d’Eddington (Marcel et al. 2018a). Il a aussi été démontré que le JED subit un cycle d’hysteresis. En revanche, la luminosité de ce cycle est bien trop faible et la présence inévitable de jets dans la configuration nous pousse a l’utilisation d’un SAD pour la reproduction d’états soft.Fort de ces résultats, j’ai adapte le code a la résolution de configuration de disque hybride, compose d’un JED interne et d’un SAD externe, séparé en un rayon de transition rJ. En jouant sur ce paramètre rJ et sur le taux d’accrétion mdot, nous avons pu montrer que les observations X de cycles typiques pouvaient être pavée. Après des calculs similaires a Heinz et Sunyaev (2003), nous pouvons estimer quel est le flux radio associe a chaque jeu de paramètres. Cela nous a permis de montrer 2 choses. (1) tous les flux radios sont reproductibles a l’aide d’un seul facteur de normalisation commun. (2) le flux radio et la forme du spectre en rayons X sont cohérents : les jeux de paramètres qui reproduisent le mieux chaque forme spectral sont associes aux bon flux radios. Afin d’illustrer ce résultat, 5 états canoniques de l’évolution de GX 339-4 ont ete reproduits : forme spectrale en X et flux radios (Marcel et al. 2018b). Pour finir, en utilisant une simple procédure d’ajustement sur la forme spectrale en X, le cycle de 2010-2011 de GX 339-4 a pu être reproduit. De manière bluffante, les évolutions de rJ et mdot semblent être en accord avec les prédictions théoriques (Esin et al. 1997). De plus, les estimations de flux radio étant cohérentes avec les observations, nous avons décidé de les ajouter directement dans la procédure d’ajustement. L’ajout de cette composante a permis une excellente reproduction simultanée de la radio et des spectres X de manière. C’est, a notre connaissance, la première fois que les phénomènes d’accrétion et d’éjection sont utilisés simultanément. Ces résultats, ainsi que les discussions et implications seront bientôt soumis. / The hysteresis behavior of X-ray binaries during their outbursts remains a mystery. In this work, we developed the paradigm proposed in Ferreira et al. (2006) where the disk material accretes in two possible, mutually exclusive, ways. In the standard accretion disk (SAD, Shakura et Sunyaev 1973) mode, the dominant local torque is due to MHD turbulence that transports radially the disk angular momentum. In the jet-emitting disk (JED, Ferreira et Pelletier 1995) mode, magnetically-driven jets carry away mass, energy and all the angular momentum from the disk. Within our framework, the transition from one mode to another is related to the magnetic field distribution, an unknown yet.In this thesis, I have developped a two-temperature plasma code able to compute the thermal balance at each radius for a large ensemble of disk parameters, as well as the self- consistent global emitted spectrum. The radiative cooling term and related spectrum (comptonized bremsstrahlung and synchrotron emission) are obtained using the Belm code (Belmont et al. 2008 ; Belmont 2009). Heating processes are analytical and due only to accretion, while advection is properly taken into account, carrying outside-in the memory of the outer thermal states.Using this code, we have shown that a JED extending along the entire disk nicely repro- duces hard states up to 0.5 Eddington luminosities (Marcel et al. 2018a). It was also shown that JEDs produce a natural hysteresis cycle. However, the global luminosity of the cycle is insufficient and the inevitable presence of jets in JEDs advocates for an inner SAD configuration in soft states.Based on these results, the code was enhanced to solve hybrid configurations with an internal JED and an external SAD, separated by a given transition radius rJ. Playing on both rJ and the accretion rate mdot, we have shown that X-ray observations of typical cycles can be completely covered. Using a simple synchrotron model similar to that of Heinz et Sunyaev (2003), the radio flux produced by the jets can be estimated, showing two important features. First, all radio observations can be covered by our model. Second, the radio flux and X- ray spectral coverages are consistents : parameter sets that reproduce best each spectral state also account for a consistent associated radio flux. For illustration, 5 canonical states from GX 339-4 have been reproduced in X-ray spectral shape and associated radio fluxes (Marcel et al. 2018b).Finaly, using a simple fitting procedure on X-ray spectral shape, the 2010-2011 cycle from GX 339-4 has been reproduced. Strikingly, the co-evolution of rJ and mdot seems to be in adequacy with initial theoretical expectations (Esin et al. 1997). Moreover, the estimated radio flux evolution being close to observations, we decided to use those within the fitting procedure. Adding radio fluxes constraints in the procedure allowed us to reproduce both the associated X-ray spectral shape and radio fluxes with excellent agreement. This is, to our knowledge, the first time that such an accretion-ejection cycle is reproduced. Those results, as well as discussions and implications will be soon submitted.
28

Magnetohydrodynamic Turbulence Modelling. Application to the dynamo effect./ Modélisation de la turbulence magnétohydrodynamique. Application à l’effet dynamo.

Lessinnes, Thomas O. D. 21 May 2010 (has links)
La magnétohydrodynamique (MHD) est la science et le formalisme qui décrivent les mouvements d'un fluide conducteur d'électricité. Il est possible que de tels mouvements donnent lieu à l'effet dynamo qui consiste en la génération d'un champ magnétique stable et de grande échelle. Ce phénomène est vraisemblablement à l'origine des champs magnétiques des planètes, des étoiles et des galaxies. Il est surprenant qu'alors que les mouvements fluides à l'intérieur de ces objets célestes sont turbulents, les champs magnétiques généré soient de grande échelle spatiale et stables sur de longues périodes de temps. De plus, ils peuvent présenter une dynamique temporelle régulière comme c'est le cas pour le champ magnétique solaire dont la polarité s'inverse tous les onze ans. Décrire et prédire les mouvements d'un fluide turbulent reste l'un des problèmes les plus difficiles de la mécanique classique. %La description aussi bien analytique que numérique d'un fluide hautement turbulent est d'une effroyable complexité, si pas tout simplement impraticable. Dans cette situation, Il est donc utile de construire des modèles aussi proches que possible du système de départ mais de moindre complexité de sorte que des études théoriques et numériques deviennent envisageables. Deux approches ont été considérées ici. D'une part, nous avons développé des modèles présentant un très petit nombre de degrés de liberté (de l'ordre de la dizaine). Une étude analytique est alors possible. Ces modèles ont une dépendance en les paramètres physiques - nombres de Reynolds cinétique et magnétique et injection d'hélicité - qualitativement similaire aux dynamos célestes et expérimentales. D'autre part, les modèles en couches permettent de caractériser les transferts d'énergie entre les structures de différentes tailles présentes au sein du champ de vitesse. Nous avons développé un nouveau formalisme qui permet d'étudier aussi les échanges avec le champ magnétique. De plus, nous proposons une étude de la MHD dans le cadre de la décomposition hélicoïdale des champs solénoïdaux - une idée similaire à la décomposition de la lumière en composantes polarisées et que nous sommes les premiers à appliquer à la MHD. Nous avons montré comment exploiter cette approche pour déduire systématiquement des modèles simplifiés de la MHD. En particulier, nos méthodes multiplient le nombre de situations descriptibles par les modèles en couche comme par exemple le problème anisotrope de la turbulence en rotation. Elles permettent aussi de construire des modèles à basse dimension en calquant les résultats de simulations numériques directes. Ces modèles peuvent alors être étudiés à moindre coûts. _______________ Magnetohydrodynamics (MHD) is both the science and the formalism that describe the motion of an electro-conducting fluid. Such motion may yield the dynamo effect consisting in the spontaneous generation of a large scale stationary magnetic field. This phenomenon is most likely the reason behind the existence of planetary, stellar and galactic magnetic fields. It is quite surprising that also the fluid motion within these objects is turbulent, the generated magnetic fields present large spatial structures evolving over long time scales. Moreover these fields can present a very regular non trivial dynamics like in the case of the Sun, the magnetic field of which switches polarity every eleven years. To describe and predict the motion of a turbulent flow remains one of the most challenging problem of classical mechanics. It is therefore useful to build models as close to the initial system as possible but of a lesser complexity so that their theoretical and numerical analysis become tractable. Two approaches have been considered here. Low dimensional models have been developed that present about ten degrees of freedom. An analytical study of the resulting dynamical system is then possible. Interestingly, the dependance of these models on the physical parameters - kinetic and magnetic Reynolds number as well as injection of kinetic helicity - qualitatively matches that of the cosmic and experimental dynamos. On the other hand, shell models allow to characterise the energy transfers between structures of different sizes within the velocity field. A new formalism is presented which makes possible to also study the exchanges with the magnetic field. Furthermore, a description of MHD in the helical decomposition is proposed. I show how to use this decomposition to build new shell and low dimensional models. The methods developed here allow to broaden the scope of possible applications of the models. In particular, shell models are generalised in such a way that they can now describe anisotropic situations like that of rotating turbulence.
29

Magnetic jets from accretion disks : field structure and X-ray emission

Memola, Elisabetta January 2002 (has links)
Astrophysikalische Jets sind stark kollimierte Materieströmungen hoher Geschwindigkeit. Sie stehen im Zusammenhang mit einer Fülle verschiedener astrophysikalischer Objekte wie jungen Sternen, stellaren schwarzen Löchern ('Mikro-Quasare'), Galaxien mit aktivem Kern (AGN) und wahrscheinlich auch mit dem beobachteten intensiven Aufblitzen von Gamma-Strahlung (Gamma Ray Bursts). Insbesondere hat sich gezeigt, dass die Jets der Mikro-Quasare wahrscheinlich als kleinskalige Version der Jets der AGN anzusehen sind. <br /> <br /> Neben den Beobachtungen haben vor allem auch theoretische Überlegungen gezeigt, dass Magnetfelder bei der Jetentstehung, -beschleunigung und -kollimation eine wichtige Rolle spielen. Weiterhin scheinen Jets systematisch verknüpft zu sein mit dem Vorhandensein einer Akkretionsscheibe um das zentrale Objekt. Insbesondere wenn ein schwarzes Loch den Zentralkörper darstellt, ist die umgebende Akkretionsscheibe der einzig mögliche Ort um Magnetfeld erzeugen zu können. <br /> <br /> Wir sind speziell interessiert am Entstehungsprozess hoch relativistischer Jets wie sie bei Mikro-Quasaren und AGN beobachtet werden. Insbesondere untersuchen wir die Region, in der der Jet kollimiert, eine Region, deren räumliche Ausdehnung extrem klein ist selbst im Vergleich zur Auflösung der Radioteleskope. Dies ist ein Grund, wieso zum heutigen Zeitpunkt für die meisten Quellen die theoretische Modellierung die einzige Möglichkeit darstellt, um Information über die physikalischen Prozesse in der innersten Region der Jetentstehung zu erhalten. <br /> <br /> Uns ist es zum ersten Mal gelungen, die globale zwei-dimensionale Magnetfeldstruktur stationärer, axialsymmetrischer, relativistischer und stark magnetisierter (kräfte-freier) Jets zu berechnen, die zum einen asymptotisch in einen zylindrischen Jet kollimieren, zum anderen aber in einer differential rotierenden Akkretionsscheibe verankert sind. Damit erlaubt dieser Ansatz eine physikalische Verkn&#168;upfung zwischen Akkretionsscheibe und dem asymptotischen Jet. Nimmt man also an, dass die Fußpunkte der Magnetfeldlinien mit Keplergeschwindigkeit rotieren, so kann man eine direkte Skalierung der Jetmagnetosphere mit der Größe des Zentralobjektes erhalten. Unsere Resultate zeigen eine gute Übereinstimmung zwischen unserem Modell und Beobachtungen des Jets von M87. <br /> <br /> Für das Beispiel eines relativistischen Mikroquasarjets haben wir die Röntgenemission im Bereich von 0.2-10.1 keV berechnet. Dafür haben wir in der Literatur aus den relativistischen magnetohydrodynamischen Gleichungen berechnete Jetgrößen (Dichte-, Geschwindigkeits-, und Temperaturprofil) verwendet und das Spektrum für jeden Punkt entlang der Jetströmung abgeleitet. Das theoretische thermische Röntgenspektrum des innersten, heißen Teils des Jets erhalten wir zusammengesetzt aus den spektralen Anteilen der einzelnen Volumenelemente entlang des Jets. Um relativistische Effekte wie Dopplerverschiebung und -verstärkung (boosting) aufgrund der Jetbewegung zu untersuchen, haben wir für verschiedene Inklinationswinkel des Jets zur Sichtlinie berechnet, wie die erhaltenen Spektren davon beeinflusst werden. <br /> <br /> Unsere Spektren zeigen deutlich die hochionisierten Eisen-Emissionslinien, die in den galaktischen Mikroquasaren GRS 1915+105 und XTE J1748-288 andeutungsweise beobachtet wurden.<br /> Eine Dopplerverschiebung dieser Linien ist in unseren Spektren deutlichzu sehen. Da die innerste, Röntgenstrahlung emittierende Region des magnetohydrodynamischen Jets allerdings noch unkollimiert ist, spielt Dopplerboosting in unseren Spektren, abhängig vom Sichtwinkel, keine große Rolle. Mit unseren Resultaten konnte zum ersten Mal ein Röntgenspektrum gewonnen werden, das auf der numerischen Lösung eines magnetohydrodynamischen Jets beruht. / Jets are highly collimated flows of matter. They are present in a large variety of astrophysical sources: young stars, stellar mass black holes (microquasars), galaxies with an active nucleus (AGN) and presumably also intense flashes of gamma-rays. In particular, the jets of microquasars, powered by accretion disks, are probably small-scale versions of the outflows from AGN. <br /> <br /> Beside observations of astrophysical jet sources, also theoretical considerations have shown that magnetic fields play an important role in jet formation, acceleration and collimation. Collimated jets seem to be systematically associated with the presence of an accretion disk around a star or a collapsed object. If the central object is a black hole, the surrounding accretion disk is the only possible location for a magnetic field generation. <br /> <br /> We are interested in the formation process of highly relativistic jets as observed from microquasars and AGN. We theoretically investigate the jet collimation region, whose physical dimensions are extremely tiny even compared to radio telescopes spatial resolution. Thus, for most of the jet sources, global theoretical models are, at the moment, the only possibility to gain information about the physical processes in the innermost jet region.<br /> <br /> For the first time, we determine the global two-dimensional field structure of stationary, axisymmetric, relativistic, strongly magnetized (force-free) jets collimating into an asymptotically cylindrical jet (taken as boundary condition) and anchored into a differentially rotating accretion disk. This approach allows for a direct connection between the accretion disk and the asymptotic collimated jet. Therefore, assuming that the foot points of the field lines are rotating with Keplerian speed, we are able to achieve a direct scaling of the jet magnetosphere in terms of the size of the central object. We find a close compatibility between the results of our model and radio observations of the M87 galaxy innermost jet.<br /> <br /> We also calculate the X-ray emission in the energy range 0.2--10.1,keV from a microquasar relativistic jet close to its source of 5 solar masses. In order to do it, we apply the jet flow parameters (densities, velocities, temperatures of each volume element along the collimating jet) derived in the literature from the relativistic magnetohydrodynamic equations. We obtain theoretical thermal X-ray spectra of the innermost jet as composition of the spectral contributions of the single volume elements along the jet. Since relativistic effects as Doppler shift and Doppler boosting due to the motion of jets toward us might be important, we investigate how the spectra are affected by them considering different inclinations of the line of sight to the jet axis. <br /> <br /> Emission lines of highly ionized iron are clearly visible in our spectra, probably also observed in the Galactic microquasars GRS 1915+105 and XTE J1748-288. The Doppler shift of the emission lines is always evident. Due to the chosen geometry of the magnetohydrodynamic jet, the inner X-ray emitting part is not yet collimated. Ergo, depending on the viewing angle, the Doppler boosting does not play a major role in the total spectra. This is the first time that X-ray spectra have been calculated from the numerical solution of a magnetohydrodynamic jet.
30

Box-Simulationen von rotierender Magnetokonvektion im flüssigen Erdkern / Box simulations of rotating magnetoconvection in the earth's fluid core

Giesecke, André January 2007 (has links)
Box-Simulationen von rotierender Magnetokonvektion im flüssigen Erdkern Numerische Simulationen der 3D-MHD Gleichungen sind mit Hilfe des Codes NIRVANA durchgeführt worden. Die Gleichungen für kompressible rotierende Magnetokonvektion wurden für erdähnliche Bedingungen numerisch in einer kartesischen Box gelöst. Charakteristische Eigenschaften mittlerer Größen, wie der Turbulenz-Intensität oder der turbulente Wärmefluss, die durch die kombinierte Wirkung kleinskaliger Fluktuationen entstehen, wurden bestimmt. Die Korrelationslänge der Turbulenz hängt signifikant von der Stärke und der Orientierung des Magnetfeldes ab, und das anisotrope Verhalten der Turbulenz aufgrund von Coriolis- und Lorentzkraft ist für schnellere Rotation wesentlich stärker ausgeprägt. Die Ausbildung eines isotropen Verhaltens auf kleinen Skalen unter dem Einfluss von Rotation alleine wird bereits durch ein schwaches Magnetfeld verhindert. Dies resultiert in einer turbulenten Strömung, die durch die vertikale Komponente dominiert wird. In Gegenwart eines horizontalen Magnetfeldes nimmt der vertikale turbulente Wärmefluss leicht mit zunehmender Feldstärke zu, so dass die Kühlung eines rotierenden Systems verbessert wird. Der horizontale Wärmetransport ist stets westwärts und in Richtung der Pole orientiert. Letzteres kann unter Umständen die Quelle für eine großskalige meridionale Strömung darstellen, während erstes in globalen Simulationen mit nicht axialsymmetrischen Randbedingungen für den Wärmefluss von Bedeutung ist. Die mittlere elektromotorische Kraft, die die Erzeugung von magnetischem Fluss durch die Turbulenz beschreibt, wurde unmittelbar aus den Lösungen für Geschwindigkeit und Magnetfeld berechnet. Hieraus konnten die entsprechenden α-Koeffizienten hergeleitet werden. Aufgrund der sehr schwachen Dichtestratifizierung ändert der α-Effekt sein Vorzeichen nahezu exakt in der Mitte der Box. Der α-Effekt ist positiv in der oberen Hälfte und negativ in der unteren Hälfte einer auf der Nordhalbkugel rotierenden Box. Für ein starkes Magnetfeld ergibt sich zudem eine deutliche abwärts orientierte Advektion von magnetischem Fluss. Ein Mean-Field Modell des Geodynamos wurde konstruiert, das auf dem α-Effekt basiert, wie er aus den Box-Simulationen berechnet wurde. Für eine äußerst beschränkte Klasse von radialen α-Profilen weist das lineare α^2-Modell Oszillationen auf einer Zeitskala auf, die durch die turbulente Diffusionszeit bestimmt wird. Die wesentlichen Eigenschaften der periodischen Lösungen werden präsentiert, und der Einfluss der Größe des inneren Kerns auf die Charakteristiken des kritischen Bereichs, innerhalb dessen oszillierende Lösungen auftreten, wurden untersucht. Reversals werden als eine halbe Oszillation interpretiert. Sie sind ein recht seltenes Ereignis, da sie lediglich dann stattfinden können, wenn das α-Profil ausreichend lange in dem periodische Lösungen erlaubenden Bereich liegt. Aufgrund starker Fluktuationen auf der konvektiven Zeitskala ist die Wahrscheinlichkeit eines solchen Reversals relativ klein. In einem einfachen nicht-linearen Mean-Field Modell mit realistischen Eingabeparametern, die auf den Box-Simulationen beruhen, konnte die Plausibilität des Reversal-Modells anhand von Langzeitsimulationen belegt werden. / Box-simulations of rotating magnetoconvection in the Earth's fluid core. Simulations of the 3D MHD-equations have been performed using the code NIRVANA. The equations for compressible rotating magnetoconvection are numerically solved in a Cartesian box assuming conditions roughly suitable for the geodynamo. The characteristics of averaged quantities like the turbulence intensity and the turbulent heat flux that are caused by the combined action of the small-scale fluctuations are computed. The correlation length of the turbulence significantly depends on the strength and orientation of the magnetic field and the anisotropic behavior of the turbulence intensity induced by Coriolis and Lorentz force is considerably more pronounced for faster rotation. The development of an isotropic behavior on the small scales -- as it is observed in pure rotating convection -- vanishes even for weak magnetic fields, which results in a turbulent flow that is dominated by the vertical component. In the presence of a horizontal magnetic field the vertical turbulent heat flux slightly increases with increasing field strength, so that cooling of the rotating system is facilitated. Horizontal transport of heat is always directed westwards and towards the poles. The latter might be a source of a large-scale meridional flow whereas the first would be important in global simulations in case of non-axisymmetric boundary conditions for the heat flux. The mean electromotive force describing the generation of mean magnetic flux by turbulence in the rotating fluid is directly calculated from the simulations and the corresponding α-coefficients are derived. Due to the very weak density stratification, the α-effect changes its sign in the middle of the box. It is positive at the top and negative at the bottom of the convective instable layer. For strong magnetic fields we also find a clear downward advection of the mean magnetic field. Finally the quenching behavior of the α-effect in dependence of the imposed magnetic field strength is presented. A geodynamo-model is constructed, which is based on an α-effect that has been computed from the box simulations. For a highly restricted class of radial α-profiles the linear α^2-model exhibits oscillating solutions on a timescale given by the turbulent diffusion time. The basic properties of the periodic solutions are presented and the influence of the inner core size on the characteristics of the critical range that allows for oscillating solutions is shown. Reversals are interpreted as half of such an oscillation. They are rather seldom events because they can only occur if the α-profile exists long enough within the small critical range that allows for periodic solutions. Due to strong fluctuations on the convective timescale the probability of such a reversal is very small. Finally, a simple non-linear mean-field model with reasonable input parameters based on the box-simulations demonstrates the plausibility of the presented theory with a long-time series of a (geo-)dynamo reversal sequence.

Page generated in 0.4111 seconds