• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude et optimisation de capacités MIM 3D à haute densité d'énergie fortement intégrées sur silicium / Study and optimization of 3D MIM capacitors highly integrated on silicon substrate with high energy storage

Madassamy, Sandrine 24 June 2016 (has links)
Le stockage de l’énergie reste une problématique majeure pour le développement d’objets embarqués (Internet of Things) à faible facteur de forme. En effet, pour le stockage et la restitution d’énergie électrique, les dispositifs les plus couramment utilisés sont les batteries, les supercondensateurs et les condensateurs électrochimiques ou céramiques. Toutefois, le contexte de la miniaturisation nécessite de fabriquer des systèmes de stockage à forte densité d’intégration, compatibles avec des techniques d’intégration de type SIP (System in Package) et ultimement SoC (System on Chip). Or, les technologies connues dans l’art antérieur produisent des composants à forte épaisseur, via des filières technologiques exotiques, incompatibles avec une co-intégration directe sur des composants silicium. Pour répondre à ces exigences, nous proposons une nouvelle approche pour l’intégration de condensateurs de très faible épaisseur sur silicium. Ces condensateurs présentent une meilleure fiabilité et de meilleures performances en linéarité que les condensateurs céramiques et peuvent stocker une densité énergétique proche de celle d’un condensateur électrochimique.Cette thèse est axée sur la conception, le développement, la réalisation, la caractérisation électrique et fiabilité de capacités MIM (Métal/Isolant/Métal) à forte densité d’intégration et présentant une forte densité énergétique. Ces condensateurs sont modelés dans une nanostructure poreuse ordonnée et développée par un procédé électrochimique. Cette nanostructure 3D permet de décupler la surface spécifique développée, par rapport à une structure planaire simple ou une microstructure 3D telle qu’actuellement exploitée par la société IPDIA. Ce nanocomposant MIM comportant un isolant à base d’alumine, déposé par ALD (Atomic Layer Deposition) d’une épaisseur variant entre 15nm et 21nm. Pour cette gamme d’épaisseur, une densité de capacité de l’ordre de 200nF/mm² à 300nF/mm² est obtenue sur une simple structure MIM, avec un champ de claquage de l’ordre de 7MV/cm et une densité d’énergie volumique maximale de 1.3mWh/cm3. Cette dernière valeur est supérieure d’une décade aux technologies actuellement exploitées par la société IPDIA. Une attention particulière a été apportée à la réduction des parasites de la structure, et lui permettant ainsi de répondre à des transitions rapide en courant. Pour cela, la résistance série de ces structures a été optimisée par l’amélioration du contact entre les nanostructures MIM et les électrodes externes. La stabilité de la capacité MIM en température et en tension est comparable aux performances des technologies de référence IPDIA (respectivement avec un coefficient thermique de 193ppm/°C et un coefficient de tension de 489 ppm/V2), lesquelles sont basées sur une structure composite de type ONO (multicouche oxyde-nitrure). Elle est par ailleurs meilleure que celle observée pour les condensateurs céramiques multicouches disponibles sur le marché. Notre capacité présente également, une excellente robustesse en température et a été utilisée jusqu’à 375°C. Les performances démontrées sur les prototypes réalisés au cours de ce travail, permettent d’envisager un vaste domaine d’applications, incluant des applications de stockage, de filtrage de rails d’alimentation, de mise en forme de signaux analogiques et de puissance. Le niveau de maturité atteint sur les premiers démonstrateurs permet d’envisager un transfert industriel dans les mois à venir. / The energy storage components remain one of the limiting features for scaling of the Internet of Things objects. Indeed, the storage devices nowadays available as batteries, supercapacitors and electrochemical or ceramic capacitors are still quite bulky and remain incompatible with reduced aspect ratio, while roadmap toward miniaturization requires concept with high integration density compatible with integration techniques like SiP ((System in Package) and on longer term SoC (System on Chip). However, technologies known from the prior art, produce components with too large thickness, inflexible shape (mostly circular or rectangular), through exotic technologies that are incompatible with direct co-integration on silicon components. To overcome those limitations, we have proposed a novel approach for the integration of very low thickness capacitors. Those capacitors have better reliability and stability performances than ceramic capacitors and are able to store energy density approaching electrochemical capacitor.This thesis is focused on the development of the capacitive structure, the processing steps, its electrical and reliability characterization and finally the electrical optimization of MIM (Metal/Isolator/Metal) capacitors. Those capacitive structures are based on a porous and self-arranged nano-template obtained by an electrochemical process. Those nanostructures allow to increase the specific surface density with respect to conventional planar or microstructures that are currently exploited by IPDIA. The MIM structure consists of alumina dielectric, deposited by ALD (Atomic Layer Deposition) with a thickness between 15nm and 21nm. For this thickness, capacitance density is obtained in the range of 200nF/mm² and 300nF/mm² for a simple MIM nanostructure, with a breakdown field about 7 MV/cm and a maximum volumetric energy density of about 1.3mWh/cm3. This last value corresponds to a decade higher with respect to current IPDIA technologies. A specific optimization has been conducted to reduce structure parasitic, and thus enable faster current transition on switching events. For that, a technic to reduce the serial resistance between the MIM nanostructure and the external electrodes has been investigated. The temperature and voltage linearity of this MIM capacitor is on par with actual IPDIA reference technologies (respectively thermal coefficient of 193ppm/°C and quadratic voltage coefficient of 489 ppm/V²), which are based on an ONO composite dielectric (multi-layer nitride oxide). This performance is outperforming the Multi-Layer Ceramic Capacitors that are currently used for equivalent application. Furthermore, demonstration of operation up to 375°C has been demonstrated for this structure. With these capacitors it is envisioned to address a large span of applications, ranging from energy storage, to filtering of power rails, or analogic and power signal conditioning. The maturity obtained on demonstrators allows to envisage an industrial transfer in the coming months.
2

Stabilisation en phase quadratique de zircone déposée par PEALD : application aux capacités MIM / Stabilization of tetragonal zirconia deposited by PEALD for MIM capacitor applications

Ferrand, Julien 10 July 2015 (has links)
Depuis plus de dix ans les capacités MIM (Métal Isolant Métal) sont des composants passifs largement intégrés au niveau des interconnections des puces de microélectronique. A cause de la miniaturisation et de la réduction de la surface des puces, la densité de capacité des capacités MIM doit être constamment augmentée. Une solution est l'utilisation d'un isolant avec une constante diélectrique élevée dit « high-k ». Pour les prochaines générations de condensateurs, des densités de capacité supérieur à 30 fF/µm² sont visées. L'oxyde de zirconium (ou zircone) a été sélectionné pour remplacer de l'oxyde de tantale actuellement utilisé. Il possède une constante diélectrique qui dépend de sa structure cristalline. Elle est respectivement de 17, 47 et 37 dans les phases monoclinique, quadratique et cubique. Il est donc nécessaire de déposer la zircone dans la phase quadratique. Cependant, les couches minces de zircone ne sont pas entièrement cristallisées dans la phase quadratique. De plus, elles ne répondent pas aux critères de fiabilité requis par la microélectronique. L'objectif de cette thèse est la stabilisation de la zircone dans la phase quadratique par le dopage. Le tantale et le germanium sont les deux dopants choisis grâce à une étude de sélection de matériaux. Des couches minces d'environ 8 nm de zircone dopée à différentes concentrations ont été réalisées par PEALD (Plasma Enhanced Atomic Layer Deposition). Après les dépôts, des recuits à 400°C pendant 30 min ont été effectués afin de reproduire les traitements thermiques subis par les couches lorsqu'elles sont intégrées dans des puces de microélectronique. Plusieurs types de caractérisations ont été effectuées afin d'étudier l'influence des dopants sur la structure cristalline de la zircone mais aussi sur ses propriétés physico-chimiques. Des tests électriques sur des capacités MIM intégrées ont permis de mesurer les propriétés électriques des couches et la fiabilité de la zircone dopée a été évaluée. Ce travail a pour but la fabrication d'une capacité MIM planaire à base d'oxyde de zirconium dopée dont la densité de capacité sera supérieure à 30 fF/µm² pour des applications de découplage. / For more than ten years Metal-Insulator-Metal capacitors (MIM) have been integrated at the level of copper interconnections. All new technology nodes have led to a decrease of the surface of chips; capacitance density must be thus enhanced. The best solution is to use a material with a high dielectric constant commonly named “high-k”. For the next MIM capacitor generation, capacitance density has to be higher than 30 fF/µm². Tantalum oxide, currently used, has reached its limits and it must be replaced. Zirconium dioxide has a high dielectric constant of 47 in the tetragonal phase with a sufficient band gap for MIM applications. When deposited in thin films, zirconia is not fully crystalized in the tetragonal phase. Moreover, this pure zirconium oxide does not fulfill the reliability criteria. The aim of this work is to stabilize zirconia in its tetragonal phase by alloying it with other elements. Tantalum and Germanium are the two dopants selected thanks to a bibliographic study. Thin layers of zirconia of 8 nm alloyed with Tantalum and Germanium have been deposited by Plasma Enhanced Atomic Layer Deposition (PEALD). Samples were annealed at 400°C during 30 minutes after deposition to reproduce the thermal conditions that microelectronic chips are submitted to. Different characterization technics have been used to study the effect of dopants on zirconia's crystalline structure and its physic-chemical properties. Tests have been made on integrated MIM capacitors with Titanium Nitride electrodes to determine the electrical properties of the layers. Reliability of zirconia doped layers was also evaluated. The purpose of this work is the production of zirconia based planar MIM capacitor with a capacitance density of 30 fF/µm².
3

Design of a Differential Cross-Coupled Power LC Oscillator with ASK Modulation

Sarker, Sanjay January 2023 (has links)
Rapid growth in the field of communications industry has led to newer opportunities and challenges in the design of CMOS based monolithic integrated circuits. ASK modulators are a class of digital modulators which are known for their relative simplicity of implementation for low cost applications in the industrial and biomedical domains. This thesis presents a LC-based CMOS Amplitude Shift Keying (ASK) modulator scheme which demonstrates promising capability for radio frequency designs. This work describes the design and implementation of differential cross-coupled NMOS only LC power oscillator with ASK modulation to operate at 2.4 GHz frequency. In this work, 65nm CMOS process technology has been used for implementation. The work mainly focused on system parameters such as oscillation frequency, output signal power, power consumption and phase noise. The LC tank was created with a centre-tap on-chip differential spiral inductor and a Metal Insulator Metal (MIM) capacitor. The method of a current mirror with switching technique is employed for biasing the LC oscillator as well as ASK modulation output. The oscillator circuit has been optimised by using a simulation based approach to study the design and measurements to gain a greater insight into the performance of the ASK modulator. An output signal power of -1.59dBm at 2.30 GHz with a phase noise of -115.39dBc/Hz@1MHz and a power consumption of 5.92mW has been achieved at the layout level. Optimal ASK modulated output performance has been obtained for the data rate of up to around 40Mbits/s. In this thesis, simulation results have been presented for both the schematic and the layout levels.

Page generated in 0.0346 seconds