441 |
Design of indoor communication infrastructure for ultra-high capacity next generation wireless servicesGordon, George S. D. January 2013 (has links)
The proliferation of data hungry wireless devices, such as smart phones and intelligent sensing networks, is pushing modern wireless networks to their limits. A significant shortfall in the ability of networks to meet demand for data is imminent. This thesis addresses this problem through examining the design of distributed antenna systems (DAS) to support next generation high speed wireless services that require high densities of access points and must support multiple-input multiple-output (MIMO) protocols. First, it is shown that fibre links in DAS can be replaced with low-cost, broadband free-space optical links, termed radio over free-space optics (RoFSO) links. RoFSO links enable the implementation of very high density DAS without the need for prohibitively expensive cabling infrastructure. A 16m RoFSO link requiring only manual alignment is experimentally demonstrated to provide a spurious-free dynamic range (SFDR) of > 100dB/Hz^2/3 over a frequency range from 300MHz- 3.1GHz. The link is measured to have an 802.11g EVM dynamic range of 36dB. This is the first such demonstration of a low-cost broadband RoFSO system. Following this, the linearity performance of RoFSO links is examined. Because of the high loss nature of RoFSO links, the directly-modulated semiconductor lasers they use are susceptible to high-order nonlinear behaviour, which abruptly limits performance at high powers. Existing measures of dynamic range, such as SFDR, assume only third-order nonlinearity and so become inaccurate in the presence of dominant high-order effects. An alternative measure of dynamic range called dynamic-distortion-free dynamic range (DDFDR) is then proposed. For two different wireless services it is observed experimentally that on average the DDFDR upper limit predicts the EVM knee point to within 1dB, while the third-order SFDR predicts it to within 6dB. This is the first detailed analysis of high-order distortion effects in lossy analogue optical links and DDFDR is the first metric able to usefully quantify such behaviour. Next, the combination of emerging MIMO wireless protocols with existing DAS is examined. It is demonstrated for the first time that for small numbers of MIMO streams (up to ~4), the capacity benefits of MIMO can be attained in existing DAS installations simply by sending the different MIMO spatial streams to spatially separated remote antenna units (RAU). This is in contrast to the prevailing paradigm of replicating each MIMO spatial stream at each RAU. Experimental results for two representative DAS layouts show that replicating spatial streams provides an increase of only ~1% in the median channel capacity over merely distributing them. This compares to a 3-4% increase of both strategies over traditional non-DAS MIMO. This result is shown to hold in the multiple user case with 20 users accessing 3 base stations. It is concluded that existing DAS installations offer negligible capacity penalty for MIMO services for small numbers of spatial streams, including in multi-user MIMO scenarios. Finally, the design of DAS to support emerging wireless protocols, such as 802.11ac, that have large numbers of MIMO streams (4-8) is considered. In such cases, capacity is best enhanced by sending multiple MIMO streams to single remote locations. This is achieved using a novel holographic mode division multiplexing (MDM) system, which sends each separate MIMO stream via a different propagation mode in a multimode fibre. Combined channel measurements over 2km of mode-multiplexed MMF and a typical indoor radio environment show in principle a 2x2 MIMO link providing capacities of 10bit/s/Hz over a bandwidth of 6GHz. Using a second experimental set-up it is shown that the system could feasibly support at least up to a 4x4 MIMO system over 2km of MMF with a condition number >15dB over a bandwidth of 3GHz, indicating a high degree of separability of the channels. Finally, it is shown experimentally that when a fibre contains sharp bends (radius between 20mm and 7.2mm) the first 6 mode-groups used for multiplexing exhibit no additional power loss or cross-coupling compared with unbent fibre, although mode-groups 7, 8 and 9 are more severely affected. This indicates that at least 6x6 multiplexing is possible in standard installations with tight fibre bends.
|
442 |
Antenna reduction techniques in MIMO systems and ad-hoc networksSpyridakis, Georgios George January 2013 (has links)
In this thesis, an antenna reduction technique in Multiple Input Multiple Output (MIMO) systems, which is called Code Shift Keying (CSK) Modulation, is introduced. With the use of Walsh Hadamard orthogonal spreading codes, we overcome the biggest drawback of conventional Spatial Modulation (SM) which is the antenna index estimation errors due to channel correlation. Also SM fails to perform in non normalised channel conditions. The combination of orthogonal spreading codes and antenna devices, as a means to convey information at the receiver, results in a remarkable performance improvement at the receiver.Moreover, an improved scheme that uses half the amount of spreading codes so as to represent the total number of information bits has been introduced leading to an important reduction in bandwidth usage. By maintaining the net spreading levels of the system we attain remarkable performance improvements.A technique called Polarisation Assisted Space Shift Keying Modulation (PASSK) has also been proposed which manages to exploit the polarisation domain and it is able to outperform the conventional SM technique as well as the Maximal Ratio Receiver Combine (MRRC) and Vertical-Bell Laboratories Layered Space-Time (V-BLAST) schemes. A new precoding scheme that manages to either eliminate or exploit the cross polarisation effects has also been proposed as a complementary study of the PASSK scheme.As modern and future communications show a rising demand for higher data transmission rates, network coding is increasingly incorporated in wireless communication standards. In harmonisation with this trend, this thesis discusses the main state-of-art network coding schemes. The contribution here includes a number of innovative schemes that are able to further increase throughput. Finally, the employment of network coding is discussed in conjunction with CSK Modulation resulting to further improvement in terms of throughput as well as Bit Error Rate (BER) performance at the cost of increased bandwidth usage.
|
443 |
MIMO channel modelling for indoor wireless communicationsMaharaj, Bodhaswar Tikanath Jugpershad 29 July 2008 (has links)
This thesis investigates multiple-input-multiple-output (MIMO) channel modelling for a wideband indoor environment. Initially the theoretical basis of geometric modelling for a typical indoor environment is looked at, and a space-time model is formulated. The transmit and receive antenna correlation is then separated and is expressed in terms of antenna element spacing, the scattering parameter, mean angle of arrival and number of antenna elements employed. These parameters are used to analyze their effect on the capacity for this environment. Then the wideband indoor channel operating at center frequencies of 2.4 GHz and 5.2 GHz is investigated. The concept of MIMO frequency scaling is introduced and applied to the data obtained in the measurement campaign undertaken at the University of Pretoria. Issues of frequency scaling of capacity, spatial correlation and the joint RX/TX double direction channel response for this indoor environment are investigated. The maximum entropy (ME) approach to MIMO channel modelling is investigated and a new basis is developed for the determination of the covariance matrix when only the RX/TX covariance is known. Finally, results comparing this model with the established Kronecker model and its application for the joint RX/TX spatial power spectra, using a beamformer, are evaluated. Conclusions are then drawn and future research opportunities are highlighted. / Thesis (PhD)--University of Pretoria, 2008. / Electrical, Electronic and Computer Engineering / unrestricted
|
444 |
Carrier Synchronization, Impairment Estimation and Interference Alignment for Wireless Communication SystemsZhou, Mingda 10 December 2019 (has links)
Wireless communication systems utilize the wireless medium to perform over-the-air (OTA) data transfer. There are many factors that can impact the quality of wireless communications, such as medium imperfection, interfering environment, mismatch of transceivers, etc. To mitigate these problems and improve the quality of service (QoS), this research study is conducted on three important topics including synchronization techniques, impairment estimation theory and techniques, and interference alignment techniques. In this thesis, it firstly present a dual link algorithm to align and manage the interference of multiple-input and multiple-output (MIMO) networks. A field-programmable gate array (FPGA) prototype is designed for software defined radio (SDR) platforms. As one of the key components, a hardware efficient architecture is proposed for the implementation of singular value decomposition (SVD). Secondly, it proposes a maximum-likelihood (ML) based synchronization approach for carrier frequency synchronization for MIMO systems. The algorithm is also implemented on FPGA for real-time performance evaluation. Finally, as an exemplary study of machine learning techniques for wireless communications, a neural network (NN) based estimator is proposed to perform coarse frequency offset estimations for MIMO systems. The proposed NN based estimator can accommodate various channel models and the results show promising performance in terms of accuracy and estimation range. In summary, this thesis provides a comprehensive study on interference alignment, carrier synchronization, and impairment estimation using different approaches. Efficient hardware implementations for the key algorithms are also presented.
|
445 |
Cooperative Vehicular Communications for High Throughput Applications / 大容量車載アプリケーションに向けた車車間協調通信Taya, Akihiro 24 September 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22099号 / 情博第709号 / 新制||情||122(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 守倉 正博, 教授 原田 博司, 教授 梅野 健 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
446 |
FPGA-Implementation of NNLS-Based mMTC User Detector for Pilot-Hopping SequencesBangalore Kumara Swamy, Vishal January 2021 (has links)
No description available.
|
447 |
Femto buňky v mobilních sítích nových generací / Femto cells in next generation mobile networksBernkopf, Jan January 2011 (has links)
This paper provides theoretical analysis of LTE network and Femto cells. Its presents their modulation and transition techniques, their performance and of course implementation of Femto cells into LTE macro-layer. It also describes potential risk of interference between LTE macro-layer and Femto cells and provides the way how to solve and simulate interference. Finally it states simulation and analysis of model situations.
|
448 |
Technologie MIMO ve standardu IEEE 802.11ac / MIMO technology in IEEE 802.11ac standardKvasnička, Jaroslav January 2017 (has links)
The object of this work is to study the IEEE 802.11ac standard, paying attention to the issue of the physical layer standard, to study in detail the use of MIMO and implement this technology into framework of WIFI simulator.
|
449 |
High-Performance Multi-Antenna Wireless for 5G and BeyondBaraani Dastjerdi, Mahmood January 2020 (has links)
Over the next decade, multi-antenna radios, including phased array and multiple-input-multiple-output (MIMO) radios, are expected to play an essential role in the next-generation of wireless networks. Phased arrays can reject spatial interferences and provide coherent beamforming gain, and MIMO technology promises to significantly enhance the system performance in the coverage, capacity, and user data rate through the beamforming or diversity/capacity gain which can substantially increase the range in wireless links, that are challenged from the transmitter (TX) power handling, receiver (RX) noise perspectives and a multi-path environment. Furthermore, the multi-user MIMO (MU-MIMO) can simultaneously serve multiple users which is vital for femtocell base stations and access points (AP).
Full-duplex (FD) wireless, namely simultaneous transmission and reception at the same frequency, is an emerging technology that has gained attention due to its potential to double the data throughput, as well as provide other benefits in the higher layers such as better spectral efficiency, reducing network and feedback signaling delays, and resolving hidden-node problems to avoid collisions. However, several challenges remain in the quest for the high-performance integrated FD radios. Transmitter power handling remains an open problem, particularly in FD radios that integrate a shared antenna interface. Secondly, FD operation must be achieved across antenna VSWR variations and a changing EM environment. Finally, FD must be extended to multi-antenna radios, including phased array and multi-input multi-output (MIMO) radios, as over the next decade, they are expected to play an essential role in the next generation of wireless networks. Multi-antenna FD operation, however, is challenged not only by the self-interference (SI) from each TX to its own RX but also cross-talk SI (CT-SI) between antennas. In this dissertation, first, a full-duplex phased array circulator-RX (circ.-RX) is proposed that achieves self-interference cancellation (SIC) through repurposing beamforming degrees of freedom (DoF) on TX and RX. Then, an FD MIMO circ.-RX is proposed that achieves SI and CT-SI cancellation (CT-SIC) through passive RF and shared-delay baseband (BB) canceller that addresses challenges associated with FD MIMO operation.
Wireless radios at millimeter-wave (mm-wave) frequencies enable the high-speed link for portable devices due to the wide-band spectrum available. Large-scale arrays are required to compensate for high path loss to form an mm-wave link. Mm-wave MIMO systems with digitization enable virtual arrays for radar, digital beamforming (DBF) for high mobility scenarios and spatial multiplexing. To preserve MIMO information, the received signal from each element in MIMO RX should be transported to ADC/DSP IC for DBF, and vice versa on the TX side. A large-scale array can be formed by tiling multiple mm-wave IC front-ends, and thus, a single-wire interface is desired between DSP IC and mm-wave ICs to reduce board routing complexity. Per-element digitization poses the challenge of handling high data-rate I/O in large-scale tiled MIMO mm-wave arrays. SERializer – DESerializer (SERDES) is traditionally being used as a high-speed link in computing systems and networks. However, SERDES results in a large area and power consumption. In this dissertation, a 60~GHz 4-element MIMO TX with a single-wire interface is presented that de-multiplexes the baseband signal of all elements and LO reference that are frequency-domain multiplexed on a single-wire coax cable.
|
450 |
Beamforming router as relay to increase 5G cell coverageDunuka, Jhansi, Panagiotou, Nikolai January 2021 (has links)
The growing traffic and global bandwidth shortage for broadband cellular communi-cation networks has motivated to explore the underutilized millimeter wave frequencyspectrum for future communications. Fifth generation (5G) is the key to empow-ering new services and use cases for people, businesses, and society at large. Withunprecedented speed and flexibility, 5G carries more data with greater reliability andresponsiveness than ever before. As 5G new radio (NR) begins to take full advantageof the high-band spectrum, i.e, the millimeter wave frequencies, new challenges arecreated. While millimeter waves offer broader bandwidth and high spatial resolution,the drawback is that the millimeter waves experience higher attenuation due to pathloss and are more prone to absorption, interference and weather conditions, thereforelimiting cell coverage.This thesis is an attempt to increase the 5G cell coverage by implementing ananalogue beamforming router in a cell. Beamforming router acts like a relay, whichextends the range of the 5G cell whenever needed, according to the position of theUser Equipment (UE) based on the information received from the gNodeB (gNB,logical 5G radio node). This thesis is investigating the downlink Signal-to-Noise Ratio(SNR) gain and thus possible increase in the data rate. Simulation and validation ofthe overall performance is done using MATLAB. The outcome of this study may beused to increase the 5G cell coverage if it is implemented in a real.
|
Page generated in 0.0327 seconds