• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 9
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electromagnetic-Theoretic Analysis and Design of MIMO Antenna Systems

Mohajer Jasebi, Mehrbod January 2011 (has links)
Multiple-Input Multiple-Output (MIMO) systems are a pivotal solution for the significant enhancement of the band-limited wireless channels’ communication capacity. MIMO system is essentially a wireless system with multiple antennas at both the transmitter and receiver ends. Compared to the conventional wireless systems, the main advantages of the MIMO systems are the higher system capacity, more bit rates, more link reliability, and wider coverage area. All of these features are currently considered as crucial performance requirements in wireless communications. Additionally, the emerging new services in wireless applications have created a great motivation to utilize the MIMO systems to fulfil the demands these applications create. The MIMO systems can be combined with other intelligent techniques to achieve these benefits by employing a higher spectral efficiency. The MIMO system design is a multifaceted problem which needs both antenna considerations and baseband signal processing. The performance of the MIMO systems depends on the cross-correlation coefficients between the transmitted/received signals by different antenna elements. Therefore, the Electromagnetic (EM) characteristics of the antenna elements and wireless environment can significantly affect the MIMO system performance. Hence, it is important to include the EM properties of the antenna elements and the physical environment in the MIMO system design and optimizations. In this research, the MIMO system model and system performance are introduced, and the optimum MIMO antenna system is investigated and developed by considering the electromagnetic aspects within three inter-related topics: 1) Fast Numerical Analysis and Optimization of the MIMO Antenna Structures: An efficient and fast optimization method is proposed based on the reciprocity theorem along with the method of moment analysis to minimize the correlation among the received/transmitted signals in MIMO systems. In this method, the effects of the radio package (enclosure) on the MIMO system performance are also included. The proposed optimization method is used in a few practical examples to find the optimal positions and orientations of the antenna elements on the system enclosure in order to minimize the cross-correlation coefficients, leading to an efficient MIMO operation. 2) Analytical Electromagnetic-Theoretic Model for the MIMO Antenna Design: The first requirement for the MIMO antennas is to obtain orthogonal radiation modes in order to achieve uncorrelated signals. Since the Spherical Vector Waves (SVW) form a complete set of orthogonal Eigen-vector functions for the radiated electromagnetic fields, an analytical method based on the SVW approach is developed to excite the orthogonal SVWs to be used as the various orthogonal modes of the MIMO antenna systems. The analytic SVW approach is used to design spherical antennas and to investigate the orthogonality of the radiation modes in the planar antenna structures. 3) Systematic SVW Methodology for the MIMO Antenna Design: Based on the spherical vector waves, a generalized systematic method is proposed for the MIMO antenna design and analysis. The newly developed methodology not only leads to a systematic approach for designing MIMO antennas, but can also be used to determine the fundamental limits and degrees of freedom for designing the optimal antenna elements in terms of the given practical restrictions. The proposed method includes the EM aspects of the antenna elements and the physical environment in the MIMO antenna system, which will provide a general guideline for obtaining the optimal current sources to achieve the orthogonal MIMO modes. The proposed methodology can be employed for any arbitrary physical environment and multi-antenna structures. Without the loss of generality, the SVW approach is employed to design and analyze a few practical examples to show how effective it can be used for MIMO applications. In conclusion, this research addresses the electromagnetic aspects of the antenna analysis, design, and optimization for MIMO applications in a rigorous and systematic manner. Developing such a design and analysis tool significantly contributes to the advancement of high-data-rate wireless communication and to the realistic evaluation of the MIMO antenna system performance by a robust scientifically-based design methodology.
12

Eight-Element Dual-Polarized MIMO Slot Antenna System for 5G Smartphone Applications

Ojaroudi Parchin, Naser, Al-Yasir, Yasir I.A., Ali, Ammar H., Elfergani, Issa T., Noras, James M., Rodriguez, Jonathan, Abd-Alhameed, Raed 02 January 2019 (has links)
Yes / In this paper, we propose an eight-port/four-resonator slot antenna array with a dual-polarized function for multiple-input-multiple-output (MIMO) 5G mobile terminals. The design is composed of four dual-polarized square-ring slot radiators fed by pairs of microstrip-line structures. The radiation elements are designed to operate at 3.6 GHz and are located on the corners of the smartphone PCB. The squarering slot radiators provide good dual-polarization characteristic with similar performances in terms of fundamental radiation characteristics. In order to improve the isolation and also reduce the mutual coupling characteristic between the adjunct microstrip-line feeding ports of the dual-polarized radiators, a pair of circular-ring/open-ended parasitic structures is embedded across each square-ring slot radiator. The −10-dB impedance bandwidth of each antenna-element is 3.4–3.8 GHz. However, for −6-dB impedance bandwidth, this value is 600 MHz (3.3–3.9 GHz). The proposed MIMO antenna offers good S-parameters, high-gain radiation patterns, and sufficient total efficiencies, even though it is arranged on a high-loss FR-4 dielectric. The SAR function and the radiation characteristics of the proposed design in the vicinity of user-hand/userhead are studied. A prototype of the proposed smartphone antenna is fabricated, and good measurements are provided. The antenna provides good features with a potential application for use in the 5G mobile terminals. / This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424. / Research Development Fund Publication Prize Award winner, January 2019.
13

On MIMO Systems and Adaptive Arrays for Wireless Communication : Analysis and Practical Aspects

Wennström, Mattias January 2002 (has links)
<p>This thesis is concerned with the use of multiple antenna elements in wireless communication over frequency non-selective radio channels. Both measurement results and theoretical analysis are presented. New transmit strategies are derived and compared to existing transmit strategies, such as beamforming and space-time block coding (STBC). It is found that the best transmission algorithm is largely dependent on the channel characteristics, such as the number of transmit and receive antennas and the existence of a line of sight component. Rayleigh fading multiple input multiple output (MIMO) channels are studied using an eigenvalue analysis and exact expressions for the bit error rates and outage capacities for beamforming and STBC is found. In general are MIMO fading channels correlated and there exists a mutual coupling between antenna elements. These findings are supported by indoor MIMO measurements. It is found that the mutual coupling can, in some scenarios, increase the outage capacity. An adaptive antenna testbed is used to obtain measurement results for the single input multiple output (SIMO) channel. The results are analyzed and design guidelines are obtained for how a beamformer implemented in hardware shall be constructed. The effects of nonlinear transmit amplifiers in array antennas are also analyzed, and it is shown that an array reduces the effective intermodulation distortion (IMD) transmitted by the array antenna by a spatial filtering of the IMD. A novel frequency allocation algorithm is proposed that reduces IMD even further. The use of a low cost antenna with switchable directional properties, the switched parasitic antenna, is studied in a MIMO context and compared to array techniques. It is found that it has comparable performance, at a fraction of the cost for an array antenna.</p>
14

On MIMO Systems and Adaptive Arrays for Wireless Communication : Analysis and Practical Aspects

Wennström, Mattias January 2002 (has links)
This thesis is concerned with the use of multiple antenna elements in wireless communication over frequency non-selective radio channels. Both measurement results and theoretical analysis are presented. New transmit strategies are derived and compared to existing transmit strategies, such as beamforming and space-time block coding (STBC). It is found that the best transmission algorithm is largely dependent on the channel characteristics, such as the number of transmit and receive antennas and the existence of a line of sight component. Rayleigh fading multiple input multiple output (MIMO) channels are studied using an eigenvalue analysis and exact expressions for the bit error rates and outage capacities for beamforming and STBC is found. In general are MIMO fading channels correlated and there exists a mutual coupling between antenna elements. These findings are supported by indoor MIMO measurements. It is found that the mutual coupling can, in some scenarios, increase the outage capacity. An adaptive antenna testbed is used to obtain measurement results for the single input multiple output (SIMO) channel. The results are analyzed and design guidelines are obtained for how a beamformer implemented in hardware shall be constructed. The effects of nonlinear transmit amplifiers in array antennas are also analyzed, and it is shown that an array reduces the effective intermodulation distortion (IMD) transmitted by the array antenna by a spatial filtering of the IMD. A novel frequency allocation algorithm is proposed that reduces IMD even further. The use of a low cost antenna with switchable directional properties, the switched parasitic antenna, is studied in a MIMO context and compared to array techniques. It is found that it has comparable performance, at a fraction of the cost for an array antenna.
15

Internal Dual-/Multi-Network Antennas for Laptop Computers

Chou, Liang-che 28 April 2008 (has links)
For laptop computers, the conventional internal antennas are usually used to operate in the WLAN system only, which can not provide sufficient and seamless services for wireless users. In order to overcome this problem, we propose some internal antennas having dual-/multi-network operation capability in this dissertation. Firstly, we present a combo antenna, which combines two shorted monopole antennas for operating in the WWAN/WLAN dual-network system. Secondly, we introduce a shorted monopole antenna through adding a parasitic element to enhance the impedance bandwidth for operating in the WLAN/WiMAX dual-network system. Thirdly, for achieving the compact-size antenna, we present a composite antenna which is composed of a ceramic chip and a printed radiating portion. Fourthly, we introduce a wideband shorted monopole antenna which can provide a wide bandwidth to cover the WPAN, WLAN, and WiMAX operations, and apply it to the MIMO system. Finally, we propose a coupling-type monopole antenna having multi-network operation capability and a compact size, which is about the smallest antenna for wideband operation in the laptop computer so far.
16

Synthèse unifiée de commandes robustes pour la chaine d'air des moteurs à combustion interne / A Unified Synthesis and Robust Control Design for the Air Path of Internal Combustion Engines

Deng, Chao 14 June 2013 (has links)
Depuis la création des moteurs à combustion interne, les recherches sur les moteurs essence et diesel se sont développées indépendamment. Afin de réduire les temps et les coûts de développement d’un moteur, une approche unifiée de conception serait intéressante. Dans ce cadre, le contrôle et la mise au point des moteurs à combustion interne pourrait être elle aussi unifiée. Bien évidemment, ce contrôle doit être stable, robuste vis-à-vis des disparités de fabrication, comme de fonctionnement. Cette thèse porte alors sur une démarche unifiée, pour les moteurs essence comme pour les moteurs diesel, afin d’obtenir un contrôle robuste de la chaîne d’air du moteur. La chaîne d’air du moteur contient les éléments permettant de contrôler la quantité et les proportions d’air et de gaz neutres dans le cylindre (Recirculation des gaz d’échappement, papillon d’admission, turbocompresseur). Cette démarche unifiée de commande, permettant de contrôler les systèmes monovariables, tout comme multivariables non carrés (nombre d’entrées différent du nombre de sorties), contient plusieurs étapes : identification d’un modèle du système, analyse du système permettant d’en déduire une structure de contrôle, synthèse d’un contrôleur autour d’un nominal, vérification de la robustesse en stabilité, tests du contrôle. Le couplage des entrées vers les sorties, les non linéarités sont pris en compte lors de la synthèse du contrôleur. Cette méthode de conception a été validée sur plusieurs applications dont un moteur essence et un moteur diesel. Des résultats expérimentaux sur un banc moteur diesel haute dynamique ont montrés que la commande multivariable permettait de réduire les émissions d’oxydes d’azote. / Since the creation of internal combustion engines, research on gasoline and diesel engines were developed independently. To reduce the time and cost of developing an engine, a unified design approach would be interesting. In this context, control and development of internal combustion engines could also be unified. Obviously, this control must be stable, robust with respect to manufacturing disparities and operating points. This thesis then focuses on a unified approach for gasoline engines as well as diesel engines, to achieve a robust of the air path. The engine air path contains the information needed to control the amount and proportions of air and neutral gases in the cylinder (exhaust gas recirculation, throttle valve, turbocharger). This unified approach to control monovariable systems, as well as non-square multivariable systems (number of inputs different from the number of outputs), consists of several steps: identification of a model of the system, system analysis to deduce a control structure, synthesis of a controller around a nominal model, check robust stability, control tests. The coupling inputs to outputs and nonlinearities are taken into account during the synthesis of the controller. This design method has been validated in several applications including a gasoline engine and a diesel engine. Experimental results on a diesel engine high dynamics test bench have shown that the multivariable control results in lower emissions of nitrogen oxides.
17

Space-Time-Block Codes For MIMO Fading Channels From Codes Over Finite Fields

Sripati, U 10 1900 (has links) (PDF)
No description available.
18

[en] MIMO GFDM SYSTEM WITH INDEX MODULATION / [pt] SISTEMA MIMO GFDM COM MODULAÇÃO DE ÍNDICE

JOSE LUIS CALPA JUAJINOY 14 May 2024 (has links)
[pt] A presente tese se dedica ao estudo do sistema de comunicação sem fio MIMO-GFDM-IM. Este sistema, por apresentar atratividades como elevada eficiência espectral, eficiência energética e resiliência ao canal de propagação multipercurso, é de interesse para os futuros sistemas de comunicação. Antecedendo o estudo deste sistema, o modelo de sinais e sistemas para MIMO-GFDM é desenvolvido com base no modelo MIMOOFDM e estratégias de detecção para o sistema são propostas. Uma nova proposta para a detecção MIMO-GFDM, baseada em duas fases de filtragem, é apresentada, resultando em atrativa relação desempenho de detecção e complexidade computacional. O modelo de sistema apresentado é então estendido para incluir a modulação de índice como portadora de informação, resultando no sistema MIMO-GFDM-IM. Inicialmente considerando sistemas ponto-a-ponto, são avaliados diferentes propostas de detectores baseados no processamento da matriz de canal completa e também para os detectores de complexidade reduzida, sob a ótica de desempenho de detecção e complexidade computacional. Por fim, é considerado o sistema MIMO-GFDM-IM no uplink de um sistema multiusuário. / [en] This thesis is dedicated to the study of the MIMO-GFDM-IM wireless communication system. This system, due to its attractiveness such as high spectral efficiency, energy efficiency and resilience to the multipath propagation channel, is of interest for future communication systems. Preceding the study of this system, the model of signals and systems for MIMOGFDM is developed based on the MIMO-OFDM model and detection strategies for the system are proposed. A new proposal for MIMO-GFDM detection, based on two filtering phases, is presented, resulting in an attractive relation between detection performance and computational complexity. The presented system model is then extended to include index modulation as an information carrier, resulting in the MIMO-GFDM-IM system. Initially considering point-to-point systems, different proposals for detectors based on processing the complete channel matrix and also for detectors of reduced complexity are evaluated, from the perspective of detection performance and computational complexity. Finally, the MIMOGFDM-IM system is considered in the uplink of a multiuser system.
19

EstimaÃÃo de canal no enlace reverso de sistemas VL-MIMO multi-celulares / Uplink channel estimation for multicell VL-MIMO systems

Igor Sousa Osterno 19 June 2015 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Este trabalho se propÃe a investigar e propor diferentes tÃcnicas de estimaÃÃo de canal de mÃltiplas entradas e mÃltiplas saÃdas (MIMO) para sistemas de comunicaÃÃo multiusuÃrio operando em regime de interferÃncia em cenÃrio de mÃltiplas cÃlulas. AtenÃÃo particular à dada ao caso onde as estaÃÃes rÃdio-base sÃo equipadas com arranjos de antenas apresentando grande quantidade de antenas, configurando o que se tem referido na literatura como sistemas de comunicaÃÃo MIMO de grande dimensÃo (VL-MIMO, do inglÃs: very large MIMO). Algumas destas tÃcnicas exploram as propriedades das grandes matrizes aleatÃrias e sÃo menos afetadas pela contaminaÃÃo de pilotos. Nesta dissertaÃÃo, os parÃmetros do canal VL-MIMO sÃo estimados a partir de uma decomposiÃÃo em autovalores (EVD, do inglÃs: eigenvalue-decomposition) da matriz de covariÃncia na saÃda do arranjo de antenas receptoras. Esta tÃcnica se mostra menos sensÃvel à presenÃa de interferÃncia do que outras que nÃo exploram propriedades especÃficas da matriz de canal VL-MIMO, como à o caso da soluÃÃo clÃssica dos mÃnimos quadrados (LS, do inglÃs: least-squares). Nesse contexto, propÃe-se ainda uma soluÃÃo para o fator de ambiguidade multiplicativa do mÃtodo baseado em EVD, utilizando um simples produto de Khatri-Rao. Na segunda parte desta dissertaÃÃo, as propriedades dos sistemas VL-MIMO sÃo empregadas num problema de localizaÃÃo de fontes, a fim de determinar a direÃÃo de chegada (DOA) dos sinais incidentes sobre o arranjo, provenientes da cÃlula em questÃo. Explorando o subespaÃo de representaÃÃo dos sinais interferentes, propÃe-se o uso de um algoritmo de classificaÃÃo de tipo MUSIC para estimar a matriz de canal de forma cega. O mÃtodo proposto converte os altos ganhos de resoluÃÃo dos arranjos VL-MIMO em capacidade de reduÃÃo de interferÃncia, podendo fornecer estimativas do canal adequadas, mesmo sob nÃveis fortes de interferÃncia e tambÃm em casos onde os sinais do usuÃrio desejado e dos interferentes sÃo altamente correlacionados espacialmente. Extensas campanhas de simulaÃÃo computacional foram realizadas, dandoum carÃter exploratÃrio a esta dissertaÃÃo no sentido de abranger diferentes cenÃrios e avaliar as tÃcnicas investigadas em comparaÃÃo com soluÃÃes jà consolidadas, permitindo assim a elaboraÃÃo de um panorama mais completo de caracterizaÃÃo dos problemas de estimaÃÃo de parÃmetros no caso VL-MIMO. / The aim of this dissertation is mainly to investigate and propose different channel estimation techniques for a multicell multiuser multiple-input multiple-output (MIMO) communication system. Particular attention is payed to the case that is referred to as very large (VL) MIMO (VL-MIMO) arrays, where the base stations are equipped with a great (or even huge) number of antenna sensors. Some of these techniques exploit properties issued from the (large) Random Matrices Theory and are therefore less affected by the so-called pilot contamination effect. In this work, the parameters of the VL-MIMO channel are estimated from the eigenvalue decomposition (EVD) of the output covariance matrix of the receive antenna array. This technique is more robust to the interference of signals from other cells compared with methods that do not exploit the specific properties of the VL-MIMO channel matrix, which is the case of the classical least squares (LS) solution. In this context, this work also proposes a simpler way to resolve the scaling ambiguity remaining from the EVD-based method using the Khatri-Rao product. The second part of this dissertation exploits the VL-MIMO properties on a source localization problem, aiming to determine the direction of arrival (DoA) of the signals impinging on the antenna array from a given desired cell. Based on the subspace representation of the outer cell interference signals, we propose a new blind MUSIC-like classification algorithm to estimate the channel matrix. The proposed technique convert the high resolution gains of the VL-MIMO arrays into ability to reduce power of undesired signals, yielding good channel estimates even under high interference power levels, and including cases where desired and undesired signals are strongly correlated. Computer simulations have been done in order to cope with different situations and propagation scenarios, thus yielding an exploratory character to our research and allowing us to evaluate and assess the investigated algorithms, comparing them to consolidated solutions in order to establish a complete overview of the parameter estimation problem in the VL-MIMO case.
20

Low-Complexity Receiver Algorithms in Large-Scale Multiuser MIMO Systems and Generalized Spatial Modulation

Datta, Tanumay January 2013 (has links) (PDF)
Multi-antenna wireless systems have become very popular due to their theoretically predicted higher spectral efficiencies and improved performance compared to single-antenna systems. Large-scale multiple-input multiple-output (MIMO) systems refer to wireless systems where communication terminals employ tens to hundreds of antennas to achieve in-creased spectral efficiencies/sum rates, reliability, and power efficiency. Large-scale multi-antenna systems are attractive to meet the increasing wireless data rate requirements, without compromising on the bandwidth. This thesis addresses key signal processing issues in large-scale MIMO systems. Specifically, the thesis investigates efficient algorithms for signal detection and channel estimation in large-scale MIMO systems. It also investigates ‘spatial modulation,’ a multi-antenna modulation scheme that can reduce the number of transmit radio frequency (RF) chains, without compromising much on the spectral efficiency. The work reported in this thesis is comprised of the following two parts: 1 investigation of low-complexity receiver algorithms based on Markov chain Monte Carlo (MCMC) technique, tabu search, and belief propagation for large-scale uplink multiuser MIMO systems, and 2 investigation of achievable rates and signal detection in generalized spatial modulation. 1. Receiver algorithms for large-scale multiuser MIMO systems on the uplink In this part of the thesis, we propose low-complexity algorithms based on MCMC techniques, Gaussian sampling based lattice decoding (GSLD), reactive tabu search (RTS), and factor graph based belief propagation (BP) for signal detection on the uplink in large-scale multiuser MIMO systems. We also propose an efficient channel estimation scheme based on Gaussian sampling. Markov chain Monte Carlo (MCMC) sampling: We propose a novel MCMC based detection algorithm, which achieves near-optimal performance in large dimensions at low complexities by the joint use of a mixed Gibbs sampling (MGS) strategy and a multiple restart strategy with an efficient restart criterion. The proposed mixed Gibbs sampling distribution is a weighted mixture of the target distribution and uniform distribution. The presence of the uniform component in the sampling distribution allows the algorithm to exit from local traps quickly and alleviate the stalling problem encountered in conventional Gibbs sampling. We present an analysis for the optimum choice of the mixing ratio. The analysis approach is to define an absorbing Markov chain and use its property regarding the expected number of iterations needed to reach the global minima for the first time. We also propose an MCMC based algorithm which exploits the sparsity in uplink multiuser MIMO transmissions, where not all users are active simultaneously. Gaussian sampling based lattice decoding: Next, we investigate the problem of searching the closest lattice point in large dimensional lattices and its use in signal detection in large-scale MIMO systems. Specifically, we propose a Gaussian sampling based lattice decoding (GSLD) algorithm. The novelty of this algorithm is that, instead of sampling from a discrete distribution as in Gibbs sampling, the algorithm iteratively generates samples from a continuous Gaussian distribution, whose parameters are obtained analytically. This makes the complexity of the proposed algorithm to be independent of the size of the modulation alpha-bet. Also, the algorithm is able to achieve near-optimal performance for different antenna and modulation alphabet settings at low complexities. Random restart reactive tabu search (R3TS): Next, we study receiver algorithms based on reactive tabu search (RTS) technique in large-scale MIMO systems. We propose a multiple random restarts based reactive tabu search (R3TS) algorithm that achieves near-optimal performance in large-scale MIMO systems. A key feature of the proposed R3TS algorithm is its performance based restart criterion, which gives very good performance-complexity tradeoff in large-dimension systems. Lower bound on maximum likelihood (ML) bit error rate (BER) performance: We propose an approach to obtain lower bounds on the ML performance of large-scale MIMO systems using RTS simulation. In the proposed approach, we run the RTS algorithm using the transmitted vector as the initial vector, along with a suitable neighborhood definition, and find a lower bound on number of errors in ML solution. We demonstrate that the proposed bound is tight (within about 0.5 dB of the optimal performance in a 16×16MIMO system) at moderate to high SNRs. Factor graph using Gaussian approximation of interference (FG-GAI): Multiuser MIMO channels can be represented by graphical models that are fully/densely connected (loopy graphs), where conventional belief propagation yields suboptimal performance and requires high complexity. We propose a solution to this problem that uses a simple, yet effective, Gaussian approximation of interference (GAI) approach that carries out a linear per-symbol complexity message passing on a factor graph (FG) based graphical model. The proposed algorithm achieves near-optimal performance in large dimensions in frequency-flat as well as frequency-selective channels. Gaussian sampling based channel estimation: Next, we propose a Gaussian sampling based channel estimation technique for large-scale time-division duplex (TDD) MIMO systems. The proposed algorithm refines the initial estimate of the channel by iteratively detecting the data block and using that knowledge to improve the estimated channel knowledge using a Gaussian sampling based technique. We demonstrate that this algorithm achieves near-optimal performance both in terms of mean square error of the channel estimates and BER of detected data in both frequency-flat and frequency-selective channels. 2. Generalized spatial modulation In the second part of the thesis, we investigate generalized spatial modulation (GSM) in point-to point MIMO systems. GSM is attractive because of its ability to work with less number of transmit RF chains compared to traditional spatial multiplexing, without com-promising much on spectral efficiency. In this work, we show that, by using an optimum combination of number of transmit antennas and number of transmit RF chains, GSM can achieve better throughput and/or BER than spatial multiplexing. We compute tight bounds on the maximum achievable rate in a GSM system, and quantify the percentage savings in the number of transmit RF chains as well as the percentage increase in the rate achieved in GSM compared to spatial multiplexing. We also propose a Gibbs sampling based algorithm suited to detect GSM signals, which yields impressive BER performance and complexity results.

Page generated in 0.0309 seconds