131 |
Initiation of DNA synthesis, mitosis, and cell division by kinetin and indoleacetic acid in excised tobacco pith tissueDas, Nirmal Kanti, January 1956 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1956. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 66-69).
|
132 |
In vitro effects of 2-methoxyestradiol, an endogenous estrogen, on MCF-12A and MCF-7 cell cycle progression [electronic resource] /Van Zijl, Magdalena Catherina January 2006 (has links)
Thesis (MSc.(Physiology)--Faculty of Health Sciences)-University of Pretoria, 2006.
|
133 |
Control of mitotic progression by components of two ubiquitin systems /Topper, Leana Miller. January 2001 (has links)
Thesis (Ph. D.)--University of Virginia, 2001. / Includes bibliographical references (leaves 170-194). Also available online through Digital Dissertations.
|
134 |
Localization and potential function of activated ERK in the somatic cell /Zecevic, Maja. January 2001 (has links)
Thesis (Ph. D.)--University of Virginia, 2001. / Includes bibliographical references (leaves 223-251). Also available online through Digital Dissertations.
|
135 |
Defining the roles of YAP/TAZ in controlling cell fate decisions following abnormal mitosisBolgioni-Smith, Amanda 24 October 2018 (has links)
Mitosis is a critically important and time sensitive cellular process that proceeds rapidly, typically completing in 15-45 minutes. Mechanisms have evolved to measure the duration of mitosis, resulting in the identification of aberrant cells that spend too long in mitosis. If non-transformed cells undergo a mitosis that exceeds 90 minutes, then the resulting daughter cells activate a durable G1 arrest and cease proliferating. The underlying mechanism acting to time the duration of mitosis is unknown. Here, we demonstrate that cells activate the Hippo pathway upon entry into mitosis, which initiates degradation of the pro-growth transcriptional co-activators YAP and TAZ. Consequently, prolonged mitosis leads to decreased YAP/TAZ levels in the following G1, thus enforcing cell cycle arrest. We reveal that inactivation of the Hippo pathway, which is common in solid tumors, is sufficient to restore YAP/TAZ levels following a prolonged mitosis, and cells born from this prolonged mitosis can progress through the cell cycle.
We also demonstrate that Hippo pathway inactivation alters cell fate decisions in response to mitotic arrest. Antimitotics (e.g. Taxol) have long been used to permanently arrest cells in mitosis, which frequently results in mitotic cell death. It has long been recognized that some cancer cells are resistant to antimitotics; this resistance can arise from cells escaping mitosis into the G1 phase in a process termed mitotic slippage. The mechanisms underlying these cell fate decisions are poorly understood. Here, we demonstrate that inactivation of the Hippo pathway promotes mitotic slippage and overall survival in cells treated with antimitotics by increasing antiapoptotic protein expression. Our data suggest that inactivation of the Hippo pathway may promote resistance to antimitotic therapies by favoring the survival and proliferation of cells that have experienced a prolonged mitosis. Interestingly, we find that restoring Hippo signaling to cancer cells that are resistant to antimitotic therapies sensitizes them to antimitotics and promotes mitotic cell death. Overall, we illuminate a broad role for Hippo signaling in determining cell fate during mitosis and identify a novel mechanism by which resistance to antimitotic therapies can arise. / 2020-10-24T00:00:00Z
|
136 |
The Concerted Regulation of Intracellular Signaling by Amyloid Precursor Protein and Aβ PeptideKirouac, Lisa 01 July 2016 (has links)
It is widely accepted that A-beta (Aβ) generated from amyloid precursor protein (APP) oligomerizes and fibrillizes to form neuritic plaques in the Alzheimer’s disease (AD) brain, yet little is known about the contribution of APP preceding AD pathogenesis. Our data presented here suggest that APP has a functional role in cell cycle regulation and proliferation. First, we demonstrat that APP is pathologically phosphorylated at Thr668 and that P-APP localizes to the centrosomes. Furthermore, P-APP is proteolytically processed in a cell cycle -dependent manner to generate its pathogenic metabolites. Using Stable Isotope Labeling by Amino Acids in Culture (SILAC) and mass spectrometry analyses, we also show that expression of APP results in the expression of proliferation-associated proteins and the phosphorylation of proteins associated with cell cycle regulation and transcription. Here, we demonstrate that APP expression and oligomeric Aβ42 elicit Ras/ERK signaling cascade and glycogen synthase kinase3 (GSK3) activation. Both ERK and GSK3 are known to induce hyperphosphorylation of tau and of APP at Thr668, and our findings suggest that aberrant signaling by APP facilitates these events. Supporting this notion, analysis of human brain samples show increased expression of Ras, activation of GSK3 and phosphorylation of APP and tau, which correlate with Aβ levels in the AD brains. Furthermore, treatment of primary rat neurons with Aβ recapitulate these events and show enhanced Ras-ERK signaling, GSK3 activation, upregulation of cyclin D1, and phosphorylation of APP and tau. The finding that Aβ induces Thr668 phosphorylation on APP, which we show enhances APP proteolysis and Aβ generation, denotes a vicious feed-forward mechanism by which APP and Aβ promote tau hyperphosphorylation and neurodegeneration in AD. Based on these results we hypothesize that aberrant proliferative signaling by APP plays a fundamental role in AD neurodegeneration and an inhibition of this would impede the mitotic catastrophe and neurodegeneration observed in AD.
|
137 |
Rôle du Rho-GEF Trio dans la division cellulaire / Role of Rho-GEF Trio in the cell divisionCannet, Aude 07 November 2014 (has links)
Durant la division cellulaire, la cellule subit des changements importants dans sa forme et son adhésion qui dépendent de l'efficacité du remodelage du cytosquelette d'actine. Ce processus est localement et temporellement régulé pour assurer le bon déroulement de la cytokinèse, l'étape finale de la division cellulaire. Il est contrôlé par les GTPases de la famille Rho via le remodelage du cytosquelette d'actine. Les Rho-GTPases fonctionnent comme des interrupteurs moléculaires, passant d'une forme au repos (liée au GDP) à une forme active (liée au GTP). La forme au repos interagit avec des facteurs d'échange, les GEFs (Guanine nucleotide Exchange Factors) qui déplacent le GDP et permet la fixation du GTP. Le retour à la forme inactive se fait par hydrolyse du GTP en GDP, stimulée par les protéines GAPs (GTPase Activating Proteins). RhoA est un régulateur positif de la cytokinèse, activée spécifiquement à l'équateur de la cellule, et qui promeut l'assemblage et la constriction de l'anneau d'actomyosine. En contraste, Rac1 a été proposée pour réguler négativement ce processus et doit être inactivée spécifiquement à l'équateur de la cellule pour le bon déroulement de la cytokinèse. Ainsi, une GAP de Rac1, MgcRacGAP, qui est localisé sur le fuseau central de microtubules, inactive Rac1 à l'équateur de la cellule. La déplétion de MgcRacGAP induit des défauts de cytokinèse qui peuvent être sauvés en co-déplétant Rac1. Cependant, le Rho-GEF activant Rac1 durant la division cellulaire n'a pas encore été identifié. Pour identifier un GEF régulant l'activité de Rac1 dans les cellules en division, nous avons réalisé une approche de « screening » par siRNA dans les cellules HeLa. Les Rac-GEFs sont déplétés par siRNA seul ou en combinaison avec un siRNA ciblant MgcRacGAP, dans le but d'identifier lesquels sont capables de sauver le nombre de cellules multinuclées induit par la déplétion de MgcRacGAP. De façon intéressante, la co-déplétion de MgcRacGAP et du Rho-GEF Trio, un GEF caractérisé principalement pour son rôle dans la croissance et le guidage axonal, entraîne une forte diminution du nombre de cellules multinuclées. Par la suite, nous démontrons que ce sauvetage du phénotype passe par la voie Trio-Rac1 en utilisant des mutants GEFs inactifs de Trio et un inhibiteur spécifique de l'activation de Rac1 par Trio. Ces résultats et le rôle de MgcRacGAP dans l'inactivation de Rac1 en cytokinèse, suggèrent que la déplétion de Trio pourrait sauver les défauts de cytokinèse induits par la déplétion de MgcRacGAP en diminuant l'activité de Rac1. Cela suggère aussi que Trio pourrait être un GEF de Rac1 dans les cellules en division. Pour directement tester si Trio pouvait fonctionner comme un GEF de Rac1 dans les cellules en division, la quantité de Rac1 a été mesurée par « pull-down assay » dans des cellules synchronisées en mitose. Comparé aux cellules traitées avec un siRNA contrôle, la déplétion de Trio réduit de moitié la quantité de Rac1 activée dans les cellules en mitose, démontrant que Trio active Rac1 en mitose. De plus, la déplétion de Trio induit des défauts de remodelage du cytosquelette d'actine dans les cellules en anaphase. De façon intéressante, la déplétion de Trio phénocopie la déplétion de Rac1 et de son effecteur Arp2/3, en accord avec un rôle de la voie Trio-Rac1 dans le contrôle du remodelage du cytosquelette d'actine dans les cellules en division. L'ensemble de ce travail a permis d'identifier pour la première fois un GEF contrôlant l'activité de Rac1 dans les cellules en division dont l'activité s'oppose à la fonction de MgcRacGAP en cytokinèse. Nous proposons ainsi un modèle dans lequel Trio contrôle l'activation de Rac1 et le remodelage du cytosquelette d'actine au cortex cellulaire dans les cellules en division. Dans notre modèle, MgcRacGAP s'oppose à l'action de Trio en inhibant localement et temporellement l'activation de Rac1 au plan de division, assurant ainsi le bon déroulement de la cytokinèse. / During cell division, cells undergo dramatic changes in shape and adhesion that depend on efficient actin cytoskeleton remodeling. This process has to be locally and temporally regulated to accurately ensure cytokinesis, the final stage of cell division. The small GTPases Rac1 and RhoA play an essential role in this process by controlling F-actin cytoskeleton remodeling. GTPases oscillate between an inactive, GDP-bound state and an active, GTP-bound state. They are activated by Guanine-nucleotide Exchange Factors (GEFs), which stimulate the GDP-to-GTP exchange, while they are turned off by GTPase-Activating Proteins (GAPs) which catalyse the hydrolysis of GTP. RhoA is a positive regulator of cytokinesis specifically activated at the division plane, which promotes the assembly and constriction of the actomyosin network. In contrast, Rac1 has been proposed to negatively regulate this process and has to be inactivated at the division plane for cytokinesis to occur properly. A central spindle localized GAP, MgcRacGAP, component of the centralspindlin complex, controls Rac1 inactivation at the cleavage plane. Depletion of Rac1 can suppress the cytokinesis failure induced by MgcRacGAP depletion. However, the Rho-GEF that activates Rac1 during cell division has not been identified yet. To identify a GEF regulating Rac1 activity in dividing cells, we performed a siRNA screening approach in HeLa cells. Rac-GEFs were depleted by siRNA alone or in combination with MgcRacGAP siRNAs, in order to identify the ones able to rescue the multinucleated cells induced by MgcRacGAP depletion. Importantly, co-depletion of MgcRacGAP and Rho-GEF Trio, a GEF characterized primarily for its role in axon outgrowth and guidance resulted in a strong decrease in the number of multinucleated cells. Then, we demonstrate that this rescue is mediated by the Trio-Rac1 pathway, using GEF dead mutants of Trio and a specific inhibitor of Rac1 activation by Trio. These data and the fact that MgcRacGAP was recently described to be essential for Rac1 inactivation in cytokinesis, suggest that Trio depletion could rescue the cytokinesis failure induced by MgcRacGAP depletion by decreasing Rac1 activity. It therefore suggests that Trio could be a GEF of Rac1 in dividing cells. To directly test if Trio could function as a GEF of Rac1 in dividing cells, the amount of activated Rac1 was monitored by pull down assay in synchronized mitotic cells. Compared to control siRNA-treated cells, Trio depletion reduced by half the amount of activated Rac1 in mitotic cells, showing that Trio activates Rac1 in mitosis. Strikingly, Trio depletion led to defects in F-actin cytoskeleton remodeling in anaphase cells. Indeed, the F-actin staining at the cortex was significantly reduced in Trio-depleted cells compared to control cells. Interestingly, Trio depletion phenocopied the depletion of Rac1, consistent with a role for the Trio-Rac1 pathway in controlling F-actin remodeling in dividing cells.Overall, this work identifies for the first time a GEF controlling Rac1 activation in dividing cells that counteracts MgcRacGAP function in cytokinesis. Based on these observations, we propose a model in which Trio functions as a GEF of Rac1 during cell division. Trio, which is expressed throughout the cell cycle, activates Rac1 to control F-actin cytoskeleton remodeling at the cell cortex of dividing cells. MgcRacGAP therefore counteracts the action of Trio by locally and temporally inhibiting Rac1 activation at the division plane, subsequently ensuring accurate cytokinesis.
|
138 |
Caractérisation du rôle des protéines phosphatases impliquées dans la déphosphorylation de la protéine kinase Greatwall lors de la sortie de mitose / Characterization of phosphatases involved in mitosis exit and its regulation mechanismsMa, Sheng 09 October 2015 (has links)
Chez la drolosophile, des mutants de Greatwall présentent des défauts de condensation des chromosomes lors de la mitose. Plus tard, la même équipe a montré que chez le Xénope, Greatwall est nécessaire pour entrer en mitose. L'idée consistant à penser que puisque Greatwall ne permet plus l'entrée en mitose, il joue un rôle dans la boucle qui conduit à l'auto-amplification de MPF. En 2009, notre équipe a montré que Greatwall est réellement impliquée dans l'entrée en mitose, mais de façon indirecte par rapport à la boucle d'amplification de MPF, et cela en contrôlant l'activité de la phosphatase PP2A. Notre équipe a montré que lorsque l'on enlève PP2A, on peut sauver le phénotype de l'absence de Greatwall. Plus tard, il a été montré que la phosphorylation de Greatwall est nécessaire pour l'entrée en mitose. La phosphorylation de Greatwall sur la partie C-terminale est nécessaire pour activer Greatwall. Par conséquent, Greatwall doit être phosphorylé pour être actif. Une fois activé, Greatwall est capable de phosphoryler Arpp19 qui lie la phosphatase PP2AB55, et qui l'inhibe permettant ainsi de maintenir les phosphorylations des substrats mitotiques. Si cette voie de signalisation n'est pas fonctionnelle, la phosphatase PP2A va déphosphoryler tous les substrats mitotiques et la cellule n'entrera jamais en mitose. Greatwall doit être phosphorylé pour s'activer et pour entrer en mitose, mais on observe aussi qu'au moment de la sortie de mitose, il est déphosphorylé, et il doit être déphosphorylé pour s'inactiver. (On ne sait pas s'il est requisse pour sortir). Mon projet consiste à chercher la/les phosphatase(s) qui pourrait contrôler l'activité ou l'inactivation de Greatwall. Les questions que l'on se pose : Comment et par quelle(s) phosphatase(s) Greatwall est déphosphorylé, comment ces phosphoatases sont activées, quel est l'ordre d'activation de ces phosphatases ? Pour étudier comment Greatwall est déphosphorylé, il y a 2 sites majors : T194 et S875. Ces 2 sites sont nécessaires pour l'activité de Greatwall. Nous avons réalisé les 2 mutants T194A et S875A, et les traduit dans l'extrait interphasique d'œufs de Xénope, pour mesurer l'activité de kinase Greatwall. Pour déphosphoryler ces 2 sites, il y a 4 phosphatases principales comme candidats : Calcineurine, Fcp1, PP1, PP2A. / The establishment of mitosis requires phosphorylaton of several substrates induced by kinases. Cdk1-cyclin B and Greatwall kinases are both necessary for the entry into mitosis. Cdk1-cyclin B complex phosphorylates many substrates and at the same time Greatwall phosphorylates Arpp19 which binds PP2AB55 phosphatase and inhibits it. PP2AB55 has an important role in the dephosphorylation of Cdk1-cyclin B mitotic substrates.In my laboratory, we found that after Greatwall depletion, either in Xenopus egg extracts or in human cells, PP2A is no longer inhibited and cells exit mitosis. Since activation of Greatwall requires its phosphorylation in the c-terminal part and in the T-loop site, we suppose that mitosis exit require dephosphorylation of Greatwall. So these dephosphorylations could be involved for Greatwall inactivation. Several phosphatases are candidates for this process: Fcp1, PP1, PP2A and Calcineurin. My project proposes to determine the involvement of these four phosphatases in Xenopus egg extracts after depletion and overexpression of these four proteins.
|
139 |
La protéine SMYLE (Short MYomegalin Like EB1 binding protein) dans l'organisation d'un complexe centrosomal, la régulation de la nucléation et la stabilisation des microtubules : conséquences sur la migration et la division des cellules cancéreuses. / SMYLE (Short MYomegalin Like EB1 binding protein) protein in the organization of a centrosomal complex and the regulation of microtubules nucleation and stabilization : consequences on cancer cell migration and division.Bouguenina, Mohammed El Habib 12 December 2016 (has links)
Les microtubules (MT) sont des polymères dynamiques ancrés par leurs extrémités moins aux centres de nucléation alors que leurs extrémités plus, explorent le cytoplasme, jusqu’à être stabilisées. Cette capture des extrémités permet l’organisation du réseau des MT. Les +TIP sont un groupe de protéines qui s’associent aux bouts plus des MT. EB1 est une protéine centrale dans le réseau des +TIP qui régule la dynamique des MT et leur interaction avec les structures d’ancrage des extrémités plus. Par protéomique ciblée, nous avons caractérisé l’interactome d’EB1, et mis en évidence un groupe de protéines, précédemment associées aux centres de nucléation incluant AKAP9, une protéine échafaudage pour les protéines kinases A (PKA), la protéine de la matrice péricentriolaire CDK5RAP2, et une isoforme courte de la myomégaline que nous avons appelé SMYLE (Short MYomegalin Like EB1 binding protein). La cartographie moléculaire a permis de montrer que ces protéines formaient un complexe organisé de manière hiérarchique. Nous avons observé que l’association transitoire deLa protéine SMYLE (Short MYomegalin Like EB1 binding protein )dans l'organisation d'un complexe centrosomal, la régulation de la nucléation et la stabilisation des microtubules : conséquences sur la migration et la division des cellules cancéreuses avec les MT néo-nucléés au centrosome favorisait la nucléation et l’acétylation des MT. De manière notable, la déplétion de SMYLE aboutissait à un défaut de nucléation, mais aussi de la capture corticale des MT. Ces défauts dans l’organisation des MT étaient associés à une baisse notable de la migration des cellules de carcinome mammaire et à des anomalies mitotiques. Nos résultats nous permettent de proposer que SMYLE fait partie d’un complexe centrosomale, qui favorise l’assemblage ou la stabilité des microtubules néo-nucléés, contribuant ainsi à des processus majeurs pour le développement tumoral. / Microtubules (MT) are dynamic polymers anchored by their minus ends at the MT organizing centers while their highly dynamic plus end explores the cytoplasm until it get stabilized. This plus end capture allows the organization of the MT network. +TIPs are a group of proteins that share the commonality to associate either directly or indirectly to MT plus ends. EB1 is a central protein of the +TIP network that regulates MT dynamics and their interactions with plus end anchoring structures. Using targeted proteomics, we have characterized the EB1 interactome and revealed a set of protein previously shown to associate with the nucleating centers that included AKAP9 an anchoring protein for protein kinase A (PKA), the pericentriolar matrix protein CDK5RAP2 and a short Myomegalin isoform that we named SMYLE (Short MYomegalin Like EB1 binding protein). Molecular mapping revealed that the proteins formed a hierarchically organized complex. We have observed that the transient association of SMYLE to the newly nucleated MTs at the centrosome favored the nucleation and acetylation. Interestingly, SMYLE depletion led to MT nucleation defects, but also a disruption of cortical MT capture. These defects in the MT network were associated with a steep fall in the migratory potential of breast cancer cells and mitotic abnormalities. Our results allow proposing that SMYLE belongs to centrosomal supramolecular complex that favors the assembly and stability of newly nucleated MTs, thus contributing to major processes in tumor development.
|
140 |
Characterising the function of CDK5RAP2 in the vertebrate centrosomeBarr, Alexis January 2010 (has links)
The centrosome is the major microtubule organising centre in vertebrate cells. CDK5RAP2 is a human protein that localises to the centrosome. At the start of this thesis work, the function of CDK5RAP2 was uncharacterised. Significantly, cdk5rap2 is one of several centrosomal genes that are mutated in the developmental disorder Primary Microcephaly, where affected individuals have smaller brains than expected for the age- and sex-adjusted mean. Orthologues of CDK5RAP2 in the fruit fly (Centrosomin/Cnn) and in fission yeast (Mod20p) have been well characterised and are known to have important roles in maintaining centrosome structure and in regulating microtubule nucleation. CDK5RAP2 shares two evolutionarily conserved domains with Cnn, known as CNN motif 1 and 2. Using the chicken B-cell line, DT40, I have used gene-targeting methods to disrupt both of these domains in CDK5RAP2. This revealed a function for CDK5RAP2 in attaching centrosomes to mitotic spindle poles. Centrosome attachment to spindle poles is mediated by a binding partner of CDK5RAP2, AKAP450. AKAP450 also localises to centrosomes and provides anchorage sites for spindle poles in the centrosome. Disruption of the CNN1 and CNN2 domains of CDK5RAP2 causes mislocalisation of AKAP450 from the centrosome and detachment of centrosomes from spindle poles. My studies in DT40 and in human cell lines revealed that CDK5RAP2 and AKAP450 also cooperate during interphase to maintain the two centrioles in the centrosome as a pair. In addition to a structural role in the centrosome, I also find that CNN motif 1 of CDK5RAP2 plays a role in the cellular response to DNA damage. In the absence of CNN motif 1, cells no longer efficiently arrest the cell cycle in response to damage. Centrosome-mediated mitotic spindle alignment and the DNA damage response have both been implicated in microcephaly. Therefore, defects in these functions of CDK5RAP2 may explain how mutations in cdk5rap2 may lead to microcephaly.
|
Page generated in 0.0164 seconds