• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elucidating the Functional Role of MLIP, a Novel Muscle A-type Lamin Interacting Protein

Rabaa, Seham 26 May 2011 (has links)
A-type lamin mutations are associated with degenerative disorders causing dilated cardiomyopathy, Charcot-Marie-Tooth neuropathy and Limb-Girdle Muscular Dystrophy. Our lab has identified MLIP; a novel protein that interacts with lamin A/C. Knocked down MLIP expression in C2C12 myoblasts down regulates myogenic regulatory factors, MyoD and Myogenin, which delays myogenic differentiation. We hypothesize that MLIP is essential for myogenic differentiation. Our goal is to define the MLIP associated pathways involved in myogenic programming. Gene expression profiling of MLIP stably knocked down C2C12 cells, identified 30 genes implicated in human disease. Mutations in five of those genes (DMPK, HSPB8, LMNB2, NEFL and SGCD) cause muscular dystrophy, neuropathies, and lipodystrophies that have phenotypic overlap with laminopathies. Further studies involving the MLIP knocked down cell lines demonstrated that in the absence of puromycin, MLIP protein expression returns to normal. This in turn affects the interpretation of the gene expression data and attempted MLIP recovery experiments.
2

Elucidating the Functional Role of MLIP, a Novel Muscle A-type Lamin Interacting Protein

Rabaa, Seham 26 May 2011 (has links)
A-type lamin mutations are associated with degenerative disorders causing dilated cardiomyopathy, Charcot-Marie-Tooth neuropathy and Limb-Girdle Muscular Dystrophy. Our lab has identified MLIP; a novel protein that interacts with lamin A/C. Knocked down MLIP expression in C2C12 myoblasts down regulates myogenic regulatory factors, MyoD and Myogenin, which delays myogenic differentiation. We hypothesize that MLIP is essential for myogenic differentiation. Our goal is to define the MLIP associated pathways involved in myogenic programming. Gene expression profiling of MLIP stably knocked down C2C12 cells, identified 30 genes implicated in human disease. Mutations in five of those genes (DMPK, HSPB8, LMNB2, NEFL and SGCD) cause muscular dystrophy, neuropathies, and lipodystrophies that have phenotypic overlap with laminopathies. Further studies involving the MLIP knocked down cell lines demonstrated that in the absence of puromycin, MLIP protein expression returns to normal. This in turn affects the interpretation of the gene expression data and attempted MLIP recovery experiments.
3

Elucidating the Functional Role of MLIP, a Novel Muscle A-type Lamin Interacting Protein

Rabaa, Seham 26 May 2011 (has links)
A-type lamin mutations are associated with degenerative disorders causing dilated cardiomyopathy, Charcot-Marie-Tooth neuropathy and Limb-Girdle Muscular Dystrophy. Our lab has identified MLIP; a novel protein that interacts with lamin A/C. Knocked down MLIP expression in C2C12 myoblasts down regulates myogenic regulatory factors, MyoD and Myogenin, which delays myogenic differentiation. We hypothesize that MLIP is essential for myogenic differentiation. Our goal is to define the MLIP associated pathways involved in myogenic programming. Gene expression profiling of MLIP stably knocked down C2C12 cells, identified 30 genes implicated in human disease. Mutations in five of those genes (DMPK, HSPB8, LMNB2, NEFL and SGCD) cause muscular dystrophy, neuropathies, and lipodystrophies that have phenotypic overlap with laminopathies. Further studies involving the MLIP knocked down cell lines demonstrated that in the absence of puromycin, MLIP protein expression returns to normal. This in turn affects the interpretation of the gene expression data and attempted MLIP recovery experiments.
4

Elucidating the Functional Role of MLIP, a Novel Muscle A-type Lamin Interacting Protein

Rabaa, Seham January 2011 (has links)
A-type lamin mutations are associated with degenerative disorders causing dilated cardiomyopathy, Charcot-Marie-Tooth neuropathy and Limb-Girdle Muscular Dystrophy. Our lab has identified MLIP; a novel protein that interacts with lamin A/C. Knocked down MLIP expression in C2C12 myoblasts down regulates myogenic regulatory factors, MyoD and Myogenin, which delays myogenic differentiation. We hypothesize that MLIP is essential for myogenic differentiation. Our goal is to define the MLIP associated pathways involved in myogenic programming. Gene expression profiling of MLIP stably knocked down C2C12 cells, identified 30 genes implicated in human disease. Mutations in five of those genes (DMPK, HSPB8, LMNB2, NEFL and SGCD) cause muscular dystrophy, neuropathies, and lipodystrophies that have phenotypic overlap with laminopathies. Further studies involving the MLIP knocked down cell lines demonstrated that in the absence of puromycin, MLIP protein expression returns to normal. This in turn affects the interpretation of the gene expression data and attempted MLIP recovery experiments.
5

Quality constrained scheduling of mining operations

Bai, Yang January 1994 (has links)
No description available.
6

Active learning of interatomic potentials to investigate thermodynamic and elastic properties of Ti0.5Al0.5N at elevated temperature

Bock, Florian January 2021 (has links)
With the immense increase in the computational power available for the material science community in recent years, a range of new discoveries were made possible. Accurate investigations of large scale atomic systems, however, still come with an extremely high computational demand. While the recent development of Graphics Processing Unit (GPU) accelerated supercomputing might offer a solution to some extent, most well known electronic structure codes have yet to be fully ported to utilize this new power. With a soaring demand for new and better materials from both science and industry, a more efficient approach for the investigation of material properties needs to be implemented. The use of Machine Learning (ML) to obtain Interatomic Potentials (IP) which far outperform the classical potentials has increased greatly in recent years. With successful implementation of ML methods utilizing neural networks or Gaussian basis functions, the accuracy of ab-initio methods can be achieved at the demand of simulations with empirical potentials. Most ML approaches, however, require high accuracy data sets to be trained sufficiently. If no such data is available for the system of interest, the immense cost of creating a viable data set from scratch can quickly negate the benefit of using ML. In this diploma project, the elastic and thermodynamic properties of the Ti0.5Al0.5N random alloy at elevated temperature are therefore investigated using an Active Learning (AL) approach with the Machine Learning Interatomic Potentials (MLIP) package. The obtained material properties are found to be in good agreement with results from computationally demanding ab-initio studies of Ti0.5Al0.5N, at a mere fraction of the demand. The AL approach requires no high accuracy data sets or previous knowledge about the system, as the model is initially trained on low accuracy data which is removed from the training set (TS) at a later stage. This allows for an iterative process of improving and expanding the data set used to train the IP, without the need for large amounts of data.
7

Identification et modélisation cellulaire d'une mutation homozygote non-sens identifiée dans le gène MLIP causant une myopathie distale à apparition tardive

Mezreani, Jean 03 1900 (has links)
Les myopathies héréditaires représentent un large groupe de pathologies neuromusculaires progressives affectant l’intégrité générale, structurelle et fonctionnelle du muscle squelettique. Elles engendrent une myriade de symptômes, ternissant qualité de vie et autonomie, et pouvant même s’avérer mortelles. La pose d’un diagnostic juste peut être difficile, entravée notamment par une faible prévalence de certaines myopathies, l’importante hétérogénéité clinique existante, et le chevauchement symptomatique des diverses formes. Malgré les avancées récentes faites dans le domaine des techniques de séquençage qui contribuent grandement au dépistage, au moins 25% des individus atteints de myopathies demeurent sans diagnostic génétique. Suivant l’investigation clinique d’un patient (Z46) atteint d’une myopathie distale à apparition tardive, l’analyse par séquençage ARN (RNA-seq) a révélé un variant non-sens homozygote de signification inconnue (VUS) à la fin de l’exon 5 du gène MLIP. Les niveaux d’expression génique altérés de « Protéine musculaire interagissant avec LMNA » (MLIP) et son partenaire « Lamine de type A » (LMNA) ont poussé à approfondir l’investigation. Davantage d’altérations -omiques furent identifiées par les techniques de RT-PCR, qPCR et WB, renforçant l’effet pathogénique du variant. Consolidant tous les résultats, le séquençage de longues lectures (LRS) a révélé un mécanisme d’épissage alternatif compensatoire de MLIP, qui tend à contourner et minimiser la production de transcrits arborant l’exon 5 muté. La présente étude vise à : 1) apporter un diagnostic génétique définitif au patient Z46, posant le variant MLIP comme causatif de la myopathie distale; 2) démontrer le pouvoir diagnostique du RNA-seq dans la résolution de ce cas complexe par l’identification et l’élucidation du VUS; 3) témoigner de l’étendue de la caractérisation transcriptomique offerte par les longues lectures du LRS. Couplé à cela, la modélisation du variant pathogénique par CRISPR/Cas9 dans une lignée cellulaire de myoblastes humains immortalisés permettra l’évaluation des impacts morpho-fonctionnels; conférant un supplément d’informations relatives aux fonctions musculaires normales et pathologiques de MLIP, faiblement caractérisées jusqu’à présent. / Hereditary myopathies represent a large group of progressive neuromuscular disorders affecting the general, structural and functional integrity of skeletal muscle. They cause a myriad of symptoms, impairing quality of life and autonomy, and can even be fatal. Making an accurate diagnosis can be difficult, hampered in particular by the low prevalence of certain myopathies, the significant clinical heterogeneity that exists, and the symptomatic overlap of the various forms. Despite recent advances in sequencing techniques that greatly assist in screening, at least 25% of individuals with myopathies remain without a genetic diagnosis. Following the clinical investigation of a patient (Z46) with a late-onset distal myopathy, RNA-sequencing (RNA-seq) analysis revealed a homozygous nonsense variant of unknown significance (VUS) at the end of exon 5 of the MLIP gene. Altered gene expression levels of ‘’Muscular LMNA-Interacting Protein’’ (MLIP) and its partner ‘’A-type Lamin’’ (LMNA) prompted further investigation. More -omic alterations were identified by RT-PCR, qPCR and WB technics, reinforcing the pathogenic effect of the variant. Consolidating all results, Long-Read Sequencing (LRS) revealed a compensatory alternative splicing mechanism of MLIP, which tends to bypass and minimize the production of transcripts carrying the mutated exon 5. The present study aims to: 1) provide a formal genetic diagnosis for patient Z46, positing the MLIP variant as causative of the distal myopathy; 2) demonstrate the diagnostic power of RNA-seq in resolving this complex case through identification and elucidation of the VUS; 3) testify to the breadth of transcriptomic characterization afforded by the long reads of LRS. Coupled with this, CRISPR/Cas9 modeling of the pathogenic variant in an immortalized human myoblast cell line will allow assessment of morpho-functional impacts; conferring additional information related to the normal and pathological muscles functions of MLIP, poorly characterized thus far.

Page generated in 0.0211 seconds