• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 17
  • 8
  • 8
  • 8
  • 7
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 110
  • 29
  • 20
  • 19
  • 19
  • 18
  • 18
  • 16
  • 16
  • 15
  • 13
  • 13
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Performance Evaluation of Modular Multilevel Converters for Photovoltaic Systems

Balachandran, Arvind January 2019 (has links)
Modular Multilevel Converters (MMCs), over recent years, have gained popularity in high-voltage(HV) and medium-voltage (MV) applications due to their high reliability. Also, with the rapid growth of solar photovoltaics (PV) and energy storage systems, there is a high demand for efficient and reliable power converter solutions. Therefore, due to the seen merits behind MMCs, this thesis assesses their performance for low-voltage (LV) applications. This is accomplished by comparing basic MMC solutions with an equivalent flying capacitors based solution. Such comparison is based on the evaluation of the passive elements requirements, semi-conductor losses, area, voltage, and current stresses, and common-mode voltage. It is worth mentioning that the evaluation is based on utilizing LV MOSFETs. Furthermore, the thesis introduces a modulation scheme for the full-bridge submodule MMC, thus further exploring the different operating regions of the full-bridge based MMC.
22

Réparation par excision de nucléotides spécifique au cycle cellulaire : implications pour la résistance à la chimiothérapie dans le cancer de l'ovaire humain

Dubé, Maxime 08 1900 (has links)
Le cancer de l’ovaire est un cancer ayant un taux de décès particulièrement élevé. Les patientes répondent habituellement bien aux traitements chimiothérapeutiques mais la majorité connaîtront une rechute. Plusieurs mécanismes ont été identifiés comme partiellement responsables du développement de la résistance clinique à la chimiothérapie, dont la réparation plus efficace de l’ADN par la réparation par excision de nucléotides (NER). L'un des agents communément utilisés pour traiter ce cancer est le cisplatine, qui induit des dommages à l'ADN réparés par le NER. Une étude précédente de notre laboratoire a démontré qu'une déficience uniquement en phase S de la réparation par le NER peut se produire. Cette déficience est aussi dépendante de la kinase ATR. Nous avons choisi de déterminer si cette déficience est présente dans certains cas de cancer de l’ovaire et si cette déficience joue un rôle sur la résistance à la chimiothérapie. Nos objectifs sont donc : (i) vérifier la présence de cette déficience dans diverses lignées isolées du cancer de l’ovaire ; (ii) vérifier si le traitement chimiothérapeutique par des agents à base de platine peut favoriser la survie de cellules ayant une meilleure capacité de réparation par le NER; (iii) mesurer la sensibilité de ces lignées au cisplatine et vérifier si ceci corrèle avec leur capacité de réparation par le NER en phase S; (iv) déterminer si cette déficience est causée par la kinase ATR dans ces lignées. Nous avons déterminé qu’une déficience importante de la réparation par le GG-NER en phase S est présente dans de nombreuses lignées. De plus, des lignées isolées d’une même patiente pré-chimiothérapie et post-chimiothérapie montrent une augmentation significative de leur capacité de réparation par le GG-NER en phase S, suggérant un rôle de ce processus dans la résistance à la chimiothérapie. Nous avons aussi démontré qu’il y a une corrélation entre la capacité de réparation en phase S par le GG-NER et la sensibilité des lignées au cisplatine. Toutefois, nos résultats suggèrent que cette déficience n’est pas causée par ATR dans ces lignées puisque la phosphorylation de H2AX en réponse aux UV est similaire dans toutes les lignées. En plus d’un important apport fondamental, cette étude permettra d’étudier un potentiel mécanisme de résistance aux traitements chimiothérapeutiques dans le cancer de l’ovaire humain. / Ovarian cancer is one of the most lethal cancers. Patients usually respond very well to chemotherapy but most will eventually relapse. Many molecular processes have already been shown to influence chemotherapy resistance, including more efficient DNA repair by nucleotide excision repair. One commonly used drug for the treatment of ovarian cancer is cisplatin, a drug inducing lesions on DNA that can be repaired by NER. A previous study in our lab has shown that NER can be deficient specifically in S-phase. This effect is dependent on the kinase ATR. Thus, we chose to explore the possibility that this deficiency has an impact on resistance to cisplatin. Our objectives are: (i) to study the repair profile by NER in S-phase in ovarian cancer cell lines; (ii) to test if chemotherapeutic treatment can modulate nucleotide excision repair in cell lines by selecting cells that repair damage by NER more efficiently; (iii) to measure the sensitivity of these cell lines to cisplatin; (iv) to test if this deficiency can be attributed to ATR signalling. We show in this study that many ovarian cancer cell lines have an important defect in GG-NER specifically in S-phase. Pairs of cell lines that were isolated before and after chemotherapeutic treatment show an increase in their GG-NER efficiency in S-phase, suggesting a role for this enzymatic process in chemotherapy resistance. Also, we have found a correlation between the efficiency of GG-NER in S-phase and the sensitivity to cisplatin in the cell lines used in our study. However, the defect in GG-NER in S-phase in these ovarian cancer cell lines doesn’t seem to be due to ATR because the phosphorylation of H2AX in response to UV is equivalent between the different cell lines. This study will have an impact on our understanding of the fundamental aspects of DNA repair but could also provide insights on a potential novel mechanism of resistance to chemotherapy.
23

Réparation par excision de nucléotides spécifique au cycle cellulaire : implications pour la résistance à la chimiothérapie dans le cancer de l'ovaire humain

Dubé, Maxime 08 1900 (has links)
Le cancer de l’ovaire est un cancer ayant un taux de décès particulièrement élevé. Les patientes répondent habituellement bien aux traitements chimiothérapeutiques mais la majorité connaîtront une rechute. Plusieurs mécanismes ont été identifiés comme partiellement responsables du développement de la résistance clinique à la chimiothérapie, dont la réparation plus efficace de l’ADN par la réparation par excision de nucléotides (NER). L'un des agents communément utilisés pour traiter ce cancer est le cisplatine, qui induit des dommages à l'ADN réparés par le NER. Une étude précédente de notre laboratoire a démontré qu'une déficience uniquement en phase S de la réparation par le NER peut se produire. Cette déficience est aussi dépendante de la kinase ATR. Nous avons choisi de déterminer si cette déficience est présente dans certains cas de cancer de l’ovaire et si cette déficience joue un rôle sur la résistance à la chimiothérapie. Nos objectifs sont donc : (i) vérifier la présence de cette déficience dans diverses lignées isolées du cancer de l’ovaire ; (ii) vérifier si le traitement chimiothérapeutique par des agents à base de platine peut favoriser la survie de cellules ayant une meilleure capacité de réparation par le NER; (iii) mesurer la sensibilité de ces lignées au cisplatine et vérifier si ceci corrèle avec leur capacité de réparation par le NER en phase S; (iv) déterminer si cette déficience est causée par la kinase ATR dans ces lignées. Nous avons déterminé qu’une déficience importante de la réparation par le GG-NER en phase S est présente dans de nombreuses lignées. De plus, des lignées isolées d’une même patiente pré-chimiothérapie et post-chimiothérapie montrent une augmentation significative de leur capacité de réparation par le GG-NER en phase S, suggérant un rôle de ce processus dans la résistance à la chimiothérapie. Nous avons aussi démontré qu’il y a une corrélation entre la capacité de réparation en phase S par le GG-NER et la sensibilité des lignées au cisplatine. Toutefois, nos résultats suggèrent que cette déficience n’est pas causée par ATR dans ces lignées puisque la phosphorylation de H2AX en réponse aux UV est similaire dans toutes les lignées. En plus d’un important apport fondamental, cette étude permettra d’étudier un potentiel mécanisme de résistance aux traitements chimiothérapeutiques dans le cancer de l’ovaire humain. / Ovarian cancer is one of the most lethal cancers. Patients usually respond very well to chemotherapy but most will eventually relapse. Many molecular processes have already been shown to influence chemotherapy resistance, including more efficient DNA repair by nucleotide excision repair. One commonly used drug for the treatment of ovarian cancer is cisplatin, a drug inducing lesions on DNA that can be repaired by NER. A previous study in our lab has shown that NER can be deficient specifically in S-phase. This effect is dependent on the kinase ATR. Thus, we chose to explore the possibility that this deficiency has an impact on resistance to cisplatin. Our objectives are: (i) to study the repair profile by NER in S-phase in ovarian cancer cell lines; (ii) to test if chemotherapeutic treatment can modulate nucleotide excision repair in cell lines by selecting cells that repair damage by NER more efficiently; (iii) to measure the sensitivity of these cell lines to cisplatin; (iv) to test if this deficiency can be attributed to ATR signalling. We show in this study that many ovarian cancer cell lines have an important defect in GG-NER specifically in S-phase. Pairs of cell lines that were isolated before and after chemotherapeutic treatment show an increase in their GG-NER efficiency in S-phase, suggesting a role for this enzymatic process in chemotherapy resistance. Also, we have found a correlation between the efficiency of GG-NER in S-phase and the sensitivity to cisplatin in the cell lines used in our study. However, the defect in GG-NER in S-phase in these ovarian cancer cell lines doesn’t seem to be due to ATR because the phosphorylation of H2AX in response to UV is equivalent between the different cell lines. This study will have an impact on our understanding of the fundamental aspects of DNA repair but could also provide insights on a potential novel mechanism of resistance to chemotherapy.
24

matlab scripts: mmc periodic signal model

Fehr, Hendrik 21 July 2021 (has links)
Calculate solutions of a dynamic MMC energy-based model, when the system variables, i.e. the voltages and currents, are given as periodic signals. The signals are represented by a finite number distinct frequency components. As a result, the arm energies and cell voltages are given in this signal domain and can easily be translated to time domain as well.:cplx_series.m cplx_series_demo.m energy_series.m denergy_series.m check_symmetry.m transf2arm.m LICENSE.GNU_AGPLv3 sconv2.m
25

Machining of Some Difficult-to-Cut Materials with Rotary Cutting Tools

Stjernstoft, Tero January 2004 (has links)
Automobile and aero industries have an increasing interestin materials with improved mechanical properties. However, manyof these new materials are classified as difficult-to-cut withconventional tools. It is obvious that tools, cutting processesand cutting models has to be devel-oped parallel to materialsscience. In this thesis rotary cutting tools are tested as analternative toexpensive diamond or cubic bore nitridetools. Metal matrix composites mostly consist of a light metalalloy (such as aluminium or titanium) reinforced with hard andabrasive ceramic parti-cles or fibres. On machining, thereinforcement results in a high rate of tool wear. This is themain problem for the machining of MMCs. Many factors affect thelife length of a tool, i.e. matrix alloy, type, size andfraction of the reinforcement, heat treatment, cuttingconditions and tool properties. In tests, the Al-SiC MMC formed a deformation layer duringmilling, probably affected by lack of cooling. The dominatingfactor for tool life was the cutting speed. Water jet or CO2cooling of turning did not provide dramatic increase in toollife. With PCD, cutting speeds up to 2000 m/min were usedwithout machining problems and BUE formation. Tool flank wearwas abrasive and crater wear created an "orange-peel type" wearsurface. PCD inserts did not show the typical increase in flankwear rate at the end of its lifetime. The use of self-propelled rotary tools seems to be apromising way to increase tool life. No BUE was formed on therotary tool at high cutting data. The measurements indicatethat the rotary tool creates twice as good surface as PCDtools. The longest tool life was gained with an inclinationangle of 10 degrees. Tool costs per component will beapproximately the same, but rotary cutting tool allows higherfeeds and therefore a higher production rate and thus a lowerproduction cost. The rotary cutting operation might have a potential toincrease productiv-ity in bar peeling. The lack of BUE withrotary cutting gives hope on higher tool life. The test resultsshow that tool wear was 27% lower with rotary cutting tools.Increase of cutting speed from 22 to 44 m/min did not affectcutting forces. This indicates that the cutting speed canincrease without significant change in tool wear rate. Issues related to rotary cutting like cutting models,cutting processes, standards, tools and models have beendiscussed. A tool wear model with kinetic energy has beendiscussed. KEYWORDS:Difficult-to-Cut material, Metal MatrixComposite (MMC), Machining, Machinability, Rotary Cutting Tool,Acoustic Emission / <p>QCR 20161026</p>
26

Machining of Some Difficult-to-Cut Materials with Rotary Cutting Tools

Stjernstoft, Tero January 2004 (has links)
<p>Automobile and aero industries have an increasing interestin materials with improved mechanical properties. However, manyof these new materials are classified as difficult-to-cut withconventional tools. It is obvious that tools, cutting processesand cutting models has to be devel-oped parallel to materialsscience. In this thesis rotary cutting tools are tested as analternative toexpensive diamond or cubic bore nitridetools.</p><p>Metal matrix composites mostly consist of a light metalalloy (such as aluminium or titanium) reinforced with hard andabrasive ceramic parti-cles or fibres. On machining, thereinforcement results in a high rate of tool wear. This is themain problem for the machining of MMCs. Many factors affect thelife length of a tool, i.e. matrix alloy, type, size andfraction of the reinforcement, heat treatment, cuttingconditions and tool properties.</p><p>In tests, the Al-SiC MMC formed a deformation layer duringmilling, probably affected by lack of cooling. The dominatingfactor for tool life was the cutting speed. Water jet or CO2cooling of turning did not provide dramatic increase in toollife. With PCD, cutting speeds up to 2000 m/min were usedwithout machining problems and BUE formation. Tool flank wearwas abrasive and crater wear created an "orange-peel type" wearsurface. PCD inserts did not show the typical increase in flankwear rate at the end of its lifetime.</p><p>The use of self-propelled rotary tools seems to be apromising way to increase tool life. No BUE was formed on therotary tool at high cutting data. The measurements indicatethat the rotary tool creates twice as good surface as PCDtools. The longest tool life was gained with an inclinationangle of 10 degrees. Tool costs per component will beapproximately the same, but rotary cutting tool allows higherfeeds and therefore a higher production rate and thus a lowerproduction cost.</p><p>The rotary cutting operation might have a potential toincrease productiv-ity in bar peeling. The lack of BUE withrotary cutting gives hope on higher tool life. The test resultsshow that tool wear was 27% lower with rotary cutting tools.Increase of cutting speed from 22 to 44 m/min did not affectcutting forces. This indicates that the cutting speed canincrease without significant change in tool wear rate.</p><p>Issues related to rotary cutting like cutting models,cutting processes, standards, tools and models have beendiscussed. A tool wear model with kinetic energy has beendiscussed.</p><p><b>KEYWORDS:</b>Difficult-to-Cut material, Metal MatrixComposite (MMC), Machining, Machinability, Rotary Cutting Tool,Acoustic Emission</p>
27

Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs

Gnanarathna, Udana 04 September 2014 (has links)
The recent introduction of a new converter topology, the modular multilevel converter (MMC) is a major step forward in voltage sourced converter (VSC) technology for high voltage, high power applications. To obtain a multilevel ac output waveform, a large number of semiconductor switches has to be used in the converter. The number of switches in the MMC for HVDC transmission is typically two orders of magnitudes larger than that in a two or three level VSC used in earlier generation. This large device count creates a computational challenge for electromagnetic transients (EMT) simulation programs, as it significantly increases the simulation time. The purpose of this research is to investigate whether the simulation can be speeded up. This research develops an efficient, time-varying Thévenin's equivalent model for the MMC converter based on partitioning the system’s admittance matrix. EMT simulation results show that the proposed equivalent model can drastically reduce the computational time without loss of accuracy. The use of the proposed equivalent method is demonstrated by simulating a point to point MMC based HVDC transmission system successfully with more than 100 levels. This approach enables what was hitherto not practical; the modeling of large MMC based HVDC systems on personal computers. With the assumption of ideal switch operation and using an equivalent average capacitor value based approach, an average valued model of MMC is also proposed in this thesis. The average model can be accurately used in most of the system level studies. The control algorithms and other modeling aspects of MMC applications are also presented in this thesis. One of the advantages of multilevel converters is the low operating losses as the smaller switching frequency of each individual power electronics switch and the low voltage step change during each switching. Using a recently developed, time domain simulation approach, the operating losses of the MMC converter are estimated in this thesis. When comparing the MMC operating losses against the losses of two-level VSC, the power loss for the two-level VSC is found to be significantly higher than the power loss of the MMC.
28

Battery management systems with active loading and decentralised control

Frost, Damien January 2017 (has links)
This thesis presents novel battery pack designs and control methods to be used with battery packs enhanced with power electronics. There are two areas of focus: 1) intelligent battery packs that are constructed out of many hot swappable modules and 2) smart cells that form the foundation of a completely decentralised battery management system (BMS). In both areas, the concept of active loading/charging is introduced. Active loading/charging balances the cells in a battery pack by loading each cell in proportion to its capacity. In this way, the state of charge of all cells in a series string remain synchronized at all times and all of the energy storage potential from every cell is utilized, despite any differences in capacity there may be. Experimental results from the intelligent battery show how the capacity of a pack of variably degraded cells can be increased by 46% from 97 Wh to 142 Wh using active loading/charging. Engineering design challenges of building a practical intelligent battery pack are addressed. Start up and shut down procedures, and their respective circuits, were carefully designed to ensure zero current draw from the battery cells in the off state, yet also provide a simple mechanism for turning on. Intra-pack communication was designed to provide adequate information flow and precise control. Thus, two intra-pack networks were designed: a real time communication network, and a data communication network. The decentralised control algorithms of the smart cell use a small filtering inductor as a multi-purpose sensor. By analysing the voltage across this filtering inductor, the switching actions of a string of smart cells can be optimised. Experimental results show that the optimised switching actions reduce the output voltage ripple by 83% and they synchronize the terminal voltages of the smart cells, and by extension, their states of charge. This forms the basis of a decentralised BMS that does not require any communication between cells or with a centralised controller, but can still achieve cell balancing through active loading/charging.
29

Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

January 2014 (has links)
abstract: Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile. / Dissertation/Thesis / M.S. Mechanical Engineering 2014
30

Aplicação do mínimo múltiplo comum generalizado nas ondas de pêndulos / Minimum application multiple widespread common in waves of pendulums

Silva, Jean Carlo de Sousa e 30 March 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-07-14T12:48:19Z No. of bitstreams: 2 Dissertação - Jean Carlo de Sousa e Silva - 2016.pdf: 1067779 bytes, checksum: b4f60747c4efb9967cd66d2dba3afc20 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-07-14T12:49:42Z (GMT) No. of bitstreams: 2 Dissertação - Jean Carlo de Sousa e Silva - 2016.pdf: 1067779 bytes, checksum: b4f60747c4efb9967cd66d2dba3afc20 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-07-14T12:49:42Z (GMT). No. of bitstreams: 2 Dissertação - Jean Carlo de Sousa e Silva - 2016.pdf: 1067779 bytes, checksum: b4f60747c4efb9967cd66d2dba3afc20 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-03-30 / The simple pendulums have oscillatory and periodic movements. Thus, if we analyze some of them with independent movements, they may again return to be in the same spot, if your periods are comensurávies. We present the basic concepts needed to understand this phenomenon. Ending with a hint of implementation. / Os pêndulos simples possuem movimentos oscilatórios e periódicos. Assim, se analisarmos alguns deles com movimentos independentes, eles poderão voltar a se encontrar no mesmo ponto se seus períodos forem comensurávies. Para isso apresentamos os conceitos básicos necessários para a compreensão desse fenômeno. Finalizando com uma sugestão de aplicação do mesmo.

Page generated in 0.05 seconds