41 |
Stabilisering av betongstommar : Beräkning av en ekvivalent beräkningsmodul med hänsyn till samverkande kort- och långtidslast / Stabilization of concrete structures : Calculation of an equivalent modulus of elasticity taking into account interaction of short- and long-term loadsPersson, Anna, Strand, Martin January 2013 (has links)
Vid stabilisering av betongstommar är det komplicerat att välja en korrekt elasticitetsmodul. Detta då stommens laster verkar under både kort och lång tid. I detta examensarbete utförs en noggrann kryptalsberäkning för varje plans vertikala element, där hänsyn tas till den varierande byggtiden. Utifrån det analyseras kort- och långtidslaster med respektive elasticitetsmodul för att erhålla en ekvivalent elasticitetsmodul som tar hänsyn till de olika belastningstiderna. Denna elasticitetsmodul bestäms efter förhållandet mellan stommens knäcksäkerhet, snedställning och den vindlast som verkar på byggnaden. Den ekvivalenta elasticitetsmodulen ligger till grund för mer noggrann indata än tidigare vid stabilitetsberäkningar och redovisas i diagram som sedan kan användas i det praktiska ingenjörsarbetet. Där inget annat anges utförs beräkningar enligt Eurokod 2.Där inget annat anges är figurerna ritade av författarna. / When considering stabilization of concrete structures it is difficult to assign a correct modulus of elasticity to the structure. This is due to the presence of both short- and long-term loads. In this thesis a detailed calculation of each vertical elements creep coefficient is performed, which takes into account the varying construction time. Furthermore short and long term loads with respective modulus of elasticity are analyzed to obtain an equivalent modulus of elasticity corresponding to the two previously mentioned. The equivalent modulus of elasticity is determined by the relationship between the buckling resistance of the structure, initial imperfections and the wind load acting on the building. The equivalent modulus of elasticity is the basis for a more accurate input for stability calculations and is presented in graphs that can be used in the practice of engineering. Unless otherwise stated, calculations are performed according to Eurocode 2.Unless otherwise stated, the figures are drawn by the authors.
|
42 |
Expected Vibration Performance of Wood Floors As Affected by MSR vs. VSR Lumber E-DistributionWilson, Ann Cindy 28 May 1998 (has links)
A simulation study was done to investigate the effect of the coefficient of variation of the modulus of elasticity ((E) on the vibrational performance of joist floor systems. Eight floor cases were studied and two types of lumber were considered: MSR and VSR lumber where (E is 0.11 and 0.25, respectively. The expected floor vibrational performance of MSR versus VSR lumber floors was evaluated by: 1) the probability that the fundamental frequency is less than 10 Hz and 2) the ratio of the first percentile of predicted fundamental frequency of MSR to VSR lumber. / Master of Engineering
|
43 |
Diagnostika a zhodnocení stavu konstrukce mostu / Diagnostics and assessment of the structure of bridgeLehocký, Peter January 2022 (has links)
This diploma thesis focuses on diagnostics of bridge structures. First part of this diploma thesis will focus on theoretical knowledge about bridge structures and common diagnostic techniques suited for examining material priperties of samples taken from structure. Second part of this thesis will focus on practical use of experiments used in diagnostic branch. I will be doing visual observation of concrete structure followed by experiments on core samples. End of thesis will be evaluating structure from global perspective and will deliver specific sugestions for renovation.
|
44 |
Modeling statistical distributions and evaluating properties of mill-run lumberAnderson, Guangmei Cao 30 April 2021 (has links) (PDF)
Although it is common to model modulus of elasticity (MOE) and modulus of rupture (MOR) of graded lumber as normal, lognormal, or Weibull distributions, recent theories and empirical practices have cast doubt on these models. Mathematical proofs have been used to shown how the MOR distributions of graded lumber can be derived from the MOR distributions of mill-run populations. The MOR distribution of a graded lumber subpopulation is "pseudo- truncated" and does not exhibit the same theoretical form as the mill-run population from which it was drawn. Therefore, it is essential to explore the properties of mill-run lumber populations and properly characterize their MOE and MOR distributions. To investigate this topic, this dissertation has three objectives: 1) to determine if the within-mill means and standard deviations of MOE and MOR in mill-run southern pine (Pinus spp.) lumber differ over time, 2) to determine the correlations among hand-held grain angle meter readings, MOE, and MOR in mill- run southern pine lumber, and 3) to model statistical distributions of MOE and MOR in mill-run red pine (Pinus resinosa) and spruce (Picea spp.) lumber. This research features four main sections: 1) an introduction summarizing the conclusions of each chapter, 2) a chapter investigating if there are statistically significant differences between the means and variances of MOE and MOR in mill-run southern pine lumber populations at the same mill over time, 3) a chapter evaluating the bivariate correlations among handheld grain angle meter readings, MOR, and three measures of MOE in mill-run southern pine lumber, and 4) a chapter modeling the distributions of MOE and MOR in mill-run red pine and spruce lumber populations and comparing those to previous work on mill-run southern pine lumber populations.
|
45 |
Hemp fiber – an environmentally friendly fiber for concrete reinforcementGiltner, Brian 25 November 2020 (has links)
The commercial use of hemp fiber in the construction industry within the United States is non-existent. This lack of use is because of State and Federal laws forbidding the growth of hemp in the United States, which has led to a lack of research. Not having an established supply chain for hemp and coupled with limited research has put the United States behind other countries in finding viable options for these renewable resources. This is a study of the performance of raw hemp fibers and processed hemp twine in a cement past mixture subjected to tensile loading. Three water/cement ratios (0.66, 0.49, 0.42) were considered. Replacement of cement with fly ash is also part of the program to see if it affects the performance of the system. A detailed description of the method of applying the tensile load to the micro/macro fibers along with the fixture setup is part of this article. The results of this investigation show the hemp twine and fibers will bond to the cement matrix and they can carry higher tensile loads at higher w/c ratios. This study shows that 30 mm embedment length is best for hemp macro fibers and 20 mm embedment for hemp micro fibers. This study also includes a comparative investigation of the performance of hemp fibers to synthetic and steel fibers added to a concrete mix. This investigation examined the compressive strength of the fiber-reinforced concrete mixes, flexural capacity, ductility, flexural toughness and the effects the fibers have on Young’s modulus of elasticity. All fibers were introduced to the same mix design (w/c = 0.49) with replacement of 25% of cement with fly ash. Hemp micro fibers at the same dosing rate a synthetic micro fibers has a slightly higher toughness and equivalent flexural strength. Hemp macro fibers at a higher dosing rate as compared to synthetic fibers will have similar toughness and equivalent flexural strength. Steel fibers performed better than the synthetic and natural fibers at 28-day compressive strength.
|
46 |
Mechanical Effects of Moisture Content Variations in CLT-StructuresZoormand, Hamidreza January 2024 (has links)
Cross-laminated timber (CLT) is an emerging sustainable engineered material with unique properties that in many ways make it superior to conventional construction material. CLT was invented in the 1990s and the volume produced have increased worldwide since then. It can be used in the load bearing structure for walls and floor slabs in the different typologies, e.g. residential and office buildings.The hygroscopic nature of wood allows it to exchange moisture with the surrounding environment. This may lead to an alteration of properties of wood-based materials such as CLT and can be accompanied by deformations and stresses. These effects influence the CLT’s structural stability, durability and safety.This study focuses on the consequences of moisture content variations in CLT structures, including mechanical properties like modulus of elasticity and bending stiffness (EI). Temperature and relative humidity were measured over three years in three positions along the thickness direction of a slab element on the first floor of House Charlie, a four-storey timber office building located in Växjö, Sweden.The investigation was carried out by mathematical modelling applying MATLAB® software aiming to find the moisture content as a function of time and thickness from the real-world data of House Charlie. The focus was on determining changes in modulus of elasticity and bending stiffness in response to moisture variation. The results showed that the moisture content within a slab of the building varied periodically following the seasonal variation throughout the years. The moisture content at the bottom of the slab was significantly lower compared to two other positions. According to the linear regression analysis, a linear relationship between the moisture content (MC) and positions across the CLT slab at each time step was defined. High R2 values, above 0.9, show the goodness of the fitted model. Applying the MC as a function of time and thickness into an available relationship of modulus of elasticity (E) could predict stiffness versus varied MC in the next step. The modulus of elasticity decreased with an increase in the moisture content over the studied period with a higher variation range at the bottom of the slab. In the final step, bending stiffness was assessed as a function of the changed moisture content. Bending stiffness increased periodically over time, attributed to overall more dry-out of the slab with time.The reported results of the present study give new insight into the behaviour of CLT structure over longer time periods. The recurring pattern in alterations stems from the reliance of bending stiffness on the modulus of elasticity function, which is in turn influenced by the linear relationship with moisture content exhibiting cyclic characteristics. The minimum and maximum values for EI were 3.5×1012 Nmm2 and 3.71×1012 Nmm2, respectively, a variation of approximately ±2.5% around the average. As the time steps increased, the bending stiffness also increased, given the progressive growth of the modulus of elasticity over time.
|
47 |
Avaliação da relação entre os módulos de elasticidade estático e dinâmico de concretos produzidos com agregados graúdos reciclados em substituição aos agregados graúdos naturaisSousa, Fernando Henrique Fernandes 28 May 2018 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2018-08-16T13:06:28Z
No. of bitstreams: 1
Fernando Henrique Fernandes Sousa_.pdf: 2658604 bytes, checksum: e7b64f91760b00255d2c12f5440cf17d (MD5) / Made available in DSpace on 2018-08-16T13:06:28Z (GMT). No. of bitstreams: 1
Fernando Henrique Fernandes Sousa_.pdf: 2658604 bytes, checksum: e7b64f91760b00255d2c12f5440cf17d (MD5)
Previous issue date: 2018-05-28 / Nenhuma / O módulo de elasticidade é um parâmetro que mensura a rigidez do concreto, sendo uma das propriedades que é levada em consideração na verificação da segurança estrutural, pois expressa as condições dos estados limites último e de serviço. Quando é avaliada - a influência da substituição de agregados graúdos naturais por agregados graúdos reciclados - o comportamento elástico do concreto torna-se imprescindível, uma vez que não é similar ao comportamento de resistência à compressão, que por sua vez pode alcançar resistências superiores ao concreto produzido inteiramente com agregados graúdos naturais. Nesse sentido, o uso da resistência à compressão como parâmetro único, para se estimar o módulo de elasticidade do concreto produzido com agregados graúdos reciclados, tem sido cada vez mais questionável. Tratando-se da influência do uso de agregado graúdo reciclado no módulo de elasticidade do concreto, poucos são os estudos que apresentam os valores de módulo de elasticidade estático e módulo de elasticidade dinâmico. Diante disso, o objetivo desta pesquisa é avaliar a relação entre o módulo de elasticidade estático e o módulo de elasticidade dinâmico de concretos produzidos com agregados graúdos reciclados em substituição aos agregados graúdos naturais, com o intuito de relacionar o tipo de agregado graúdo ao módulo de elasticidade. Para tal, foram utilizados agregados graúdos reciclados de concreto e agregados graúdos reciclados de cerâmica vermelha em taxa de substituição de 30% em relação ao agregado graúdo natural. Os concretos foram produzidos em três traços experimentais, sendo eles: traço pobre (maior relação a/c), traço intermediário e traço rico (menor relação a/c). As propriedades dos concretos foram avaliadas aos 28 dias, sendo elas: massa específica do concreto no estado fresco e endurecido; porosidade; resistência à compressão; módulos de elasticidade estático e dinâmico. Como principais resultados, verificou-se que o tipo de agregado graúdo reciclado de modo geral influenciou negativamente o módulo de elasticidade, sendo essa influência mais pronunciada no módulo de elasticidade dinâmico; não foi possível obter uma relação entre o módulo de elasticidade estático e dinâmico dos concretos produzidos com agregados graúdos reciclados; o módulo de elasticidade estático dos concretos produzidos com agregados graúdos reciclados é mais fortemente relacionado à resistência e à compressão; o módulo de elasticidade dinâmico possui maior relação com a porosidade dos concretos produzidos com agregados graúdos reciclados; os módulos de elasticidade estimados por equações algébricas apresentam elevada variabilidade. / Modulus of elasticity is a parameter that measures the stiffness of the concrete, being one of the properties taken into account in the structural safety check, since it expresses the conditions of the ultimate and service boundary state. When the influence of the replacement of natural aggregates by recycled aggregates is evaluated, the elastic behavior of the concrete becomes essential, since it cannot be compared to the behavior of compressive strength, usually lower than the concrete produced with natural aggregates. The use of compressive strength as a single parameter to estimate the modulus of elasticity of concrete produced with recycled aggregates has been increasingly questionated. Considering the influence of the use of recycled aggregate on the modulus of elasticity of concrete, only a few studies have compared the values of static elastic modulus and dynamic modulus. This research aims to evaluate the relationship between the static elastic modulus and the dynamic elastic modulus of concrete produced with recycled aggregates in replacement of natural aggregates, in order to correlate the type of aggregate to the modulus of elasticity, verifying the relationship between the two procedure of determination of elasticity modulus. Aggregates made of recycled concrete and of ceramic bricks were used in a replacement rate of 30% to the natural aggregate. The concretes were produced in three experimental proportions (lower w/c ratio, intermediate w/c ratio and higher w/c ratio). The properties evaluated at 28 days are: bulk concrete mass; porosity; compressive strength; static and dynamic modulus of elasticity. The main conclusions are: the recycled aggregate decrease the modulus of elasticity, mainly the dynamic modulus; there are no relationship between the static and dynamic modulus of elasticity of concrete produced with recycled aggregates; the static modulus of concrete produced with recycled aggregates has a higher relationship to the compressive strength; the dynamic modulus of elasticity is higher related to the porosity of concrete produced with recycled aggregates; the moduli of elasticity estimated by algebraic equations present high variability.
|
48 |
Diagnostika a hodnocení prefabrikované železobetonové konstrukce / Diagnostics and assessment of prefabricated reinforced concrete structuresKocuba, Robert January 2018 (has links)
This thesis deals with inspection and constructionally technical research of reinforced concrete prefabricated construction from the second half of 20th century. In theoretical part, the research of literature, documents and valid standards is performed, with a focus on production and construction of prefabricated elements and also on the metodology of research. In practical part, the detection of reinforcement of individual elements of the construction and concrete properties is performed. The result of this work is the assessment of the state of the construction, static calculation of the ceiling panel and idea proposal for eventual reconstruction.
|
49 |
Vliv velikosti a tvaru zkušebního tělesa na modul pružnosti lehkých betonů / The Influence of the Size and Shape of Test Specimen on the Elastic Modulus of Lightweight ConcreteTichý, Aleš January 2019 (has links)
The diploma thesis deals with the determination of the influence of size, shape and type of test specimen on values of modulus of elasticity of light-weight concrete. A lot of different specimens were prepared from two concrete’s mixtures for the experiment. Tests for measurement of static modulus of elasticity and dynamic modulus of elasticity by ultrasonic impulse velocity method were made. The results were assessed and summarized in tabular and graphical form.
|
50 |
Evaluating the effects of initial stocking, physiological age and species on wood stiffnessWatson, Liam January 2013 (has links)
The influence of initial stocking and physiologically aged cuttings (taken from 1-year- old and 5-year-old parents) on corewood modulus of elasticity (MOE) in 6-year-old Pinus radiata D. Don was studied in a Nelder-design experiment in Rolleston, Canterbury. In the same experiment, the influence of initial stocking on MOE in 5-year- old Eucalyptus nitens was also investigated. The study incorporated 19 different stocking levels ranging from 207 to 40,446 stems/ha. Green dynamic modulus of elasticity was assessed in standing trees using the TreeTap stress-wave method over the lower part of the stem (0.3 – 1.9m) for 151 P. radiata trees and 115 E. nitens trees.
The interaction between species and stocking significantly influenced MOE (P<0.001). MOE of P. radiata increased by 55% (or 3.9 GPa) between 271 and 40,466 stems/ha, and by 41% (or 2.2 GPa) between 271 and 4370 stems/ha. MOE of E. nitens was also influenced by stocking but the slope was significantly lower indicating that the effect of stocking was less pronounced than for P. radiata. Over the usual range of stockings for E. nitens there was an insignificant relationship between stocking and stiffness (P=0.335). Trees were also assessed for DBH, height, and stem slenderness (height/ DBH). None of these latter variables had a significant influence on MOE after the effects of stocking and species were accounted for. No effects of physiological age of cuttings were detected in this study.
The findings of this study highlight the importance of stocking as a tool that forest managers can utilize to regulate corewood stiffness in P. radiata trees. These results also suggest that for E. nitens, where wood stiffness is a priority, forest managers could reduce establishment costs by planting at much lower initial stockings. This study also highlights the superior stiffness of E. nitens in direct comparison with P. radiata, with many trees in the experiment already exceeding stiffness thresholds for structural timber in New Zealand.
|
Page generated in 0.0298 seconds