61 |
sp-Carbon Incorporated Conductive Metal-Organic Framework as Photocathode for Photoelectrochemical Hydrogen GenerationLu, Yang, Zhong, Haixia, Li, Jian, Dominic, Anna Maria, Hu, Yiming, Gao, Zhen, Jiao, Yalong, Wu, Mingjian, Qi, Haoyuan, Huang, Chuanhui, Wayment, Lacey J., Kaiser, Ute, Spiecker, Erdmann, Weidinger, Inez M., Zhang, Wei, Feng, Xinliang, Dong, Renhao 04 June 2024 (has links)
Metal-organic frameworks (MOFs) have attracted increasing interest for broad applications in catalysis and gas separation due to their high porosity. However, the insulating feature and the limited active sites hindered MOFs as photocathode active materials for application in photoelectrocatalytic hydrogen generation. Herein, we develop a layered conductive two-dimensional conjugated MOF (2D c-MOF) comprising sp-carbon active sites based on arylene-ethynylene macrocycle ligand via CuO4 linking, named as Cu3HHAE2. This sp-carbon 2D c-MOF displays apparent semiconducting behavior and broad light absorption till the near-infrared band (1600 nm). Due to the abundant acetylene units, the Cu3HHAE2 could act as the first case of MOF photocathode for photoelectrochemical (PEC) hydrogen generation and presents a record hydrogen-evolution photocurrent density of ≈260 μA cm−2 at 0 V vs. reversible hydrogen electrode among the structurally-defined cocatalyst-free organic photocathodes.
|
62 |
Eine sp-Kohlenstoffhaltige Leitfähige Metallorganische Gerüstverbindung als Photokathode für die Photoelektrochemische WasserstoffentwicklungLu, Yang, Zhong, Haixia, Li, Jian, Dominic, Anna Maria, Hu, Yiming, Gao, Zhen, Jiao, Yalong, Wu, Mingjian, Qi, Haoyuan, Huang, Chuanhui, Wayment, Lacey J., Kaiser, Ute, Spiecker, Erdmann, Weidinger, Inez M., Zhang, Wei, Feng, Xinliang, Dong, Renhao 11 June 2024 (has links)
Metallorganische Gerüstverbindungen (englisch metal–organic frameworks, MOFs) sind aufgrund ihrer hohen Porosität von großem Interesse für eine Vielzahl von Anwendungen in der Katalyse und Gastrennung. Eine begrenzte Anzahl an aktiven Zentren sowie das Verhalten als elektrischer Isolator machen den Einsatz von MOFs als aktives Photokathodenmaterial für die photoelektrokatalytische Wasserstoffproduktion allerdings nicht möglich. Wir berichten hiermit von der Entwicklung eines gestapelten, leitfähigen, zweidimensional-konjugierten MOFs (englisch 2D conjugated MOF, 2D c-MOF) welches aktive sp-Kohlenstoffzentren enthält. Der MOF Cu3HHAE2 basiert auf einem makrozyklischen Aryl-Alkin Liganden, welcher via CuO4 Einheiten verknüpft ist. Dieser sp-Kohlenstoff haltige 2D c-MOF zeigt Halbleitereigenschaften und eine breite Absorption bis in den nah-infraroten Bereich (1600 nm). Erstmalig kann dank der hohen Anzahl an Dreifachbindungen Cu3HHAE2 als MOF-Photokathode für die photoelektrochemische
(PEC) Wasserstoffentwicklung verwendet werden. Verglichen mit anderen strukturell definierten, co-Katalysator freien organischen Photokathoden, zeigt er eine Rekordphotostromdichte für die Wasserstoffentwicklung von ≈ 260 μAcm⁻ ² bei 0 V gegen die reversible Wasserstoffelektrode (englisch reversible hydrogen electrode RHE).
|
63 |
Metal-Organic Hybrid Materials with Catalytic and Photocatalytic ApplicationsMelillo, Arianna 26 April 2022 (has links)
[ES] La presente tesis doctoral ha centrado la atención en la síntesis de nuevos materiales MOFs obtenidos por intercambio post-sintético de MOFs descritos anteriormente o por heterounión de MOFs estables que tienen estructura UiO66.
Estos materiales se han aplicado como fotocatalizadores para la prometedora reacción de división completa del agua que pretende obtener H2 y O2 en forma estequiométrica a partir de agua en ausencia de agentes sacrificantes o nanopartículas metálicas. El nuevo material UiO66 (Zr/Ce/Ti) mostró resultados sorprendentes para la reacción general de división del agua en ambas condiciones de luz UV-Visible e irradiación solar.
También se obtuvieron resultados interesantes en el caso del nucleo-corteza UiO66(Zr)-NH225@UiO66(Ce) que, en presencia de agua, cuando se irradió con luz ultravioleta y con luz solar, permitió obtener 550 𝝁 mol*g- 1 de H2 y 350 𝝁 mol*g-1 de H2 en 24 h respectivamente, en las mismas condiciones de trabajo definidas para UiO66(Zr/Ce/Ti).
En este trabajo de tesis se presentó por primera vez la posibilidad de reducir 4-NP a través de una metodología tándem que involucra primero la producción de H2 a partir de agua en presencia de metanol, como agente de sacrificio, y UiO66(Zr)-NH2, como fotocatalizador, y la posterior reducción de 4-NP a 4-AP. Por otro lado, se ha demostrado que los materiales defectuosos con estructura de UiO66 pueden reducir selectivamente los dobles enlaces polarizados X=Y en presencia de gas H2. / [CA] La present tesi doctoral ha centrat l'atenció en la síntesi de nous materials MOFs obtinguts per intercanvi post-sintètic de MOFs descrits anteriorment o per heterounió de MOFs estables que tenen estructura UiO66.
Estos materials s'han aplicat com fotocatalitzadors per a la prometedora reacció de divisió completa de l'aigua que pretén obtindre H2 i O2 en forma estequiomètrica a partir d'aigua en absència d'agents sacrificants o nanopartícules metàl·liques. El nou material UiO66 (Zr/Ce/Ti) va mostrar resultats sorprenents per a la reacció general de divisió de l'aigua en ambdós condicions de llum UV-Visible i irradiació solar.
També es van obtindre resultats interessants en el cas del core-shell UiO66 (Zr) - NH225@UiO66 (Ce) que, en presència d'aigua, quan es va irradiar amb llum ultravioleta i amb llum solar, va permetre obtindre 550 𝝁 mol*g-1 de H2 i 350 𝝁 mol*g-1 de H2 en 24 h respectivament, en les mateixes condicions de treball definides per a UiO66 (Zr/Ce/Ti).
En este treball de tesi es va presentar per primera vegada la possibilitat de reduir 4-nitrofenol a través d'una metodologia tàndem que involucra primer la producció de H2 a partir d'aigua en presència de metanol, com a agent de sacrifici, i UiO66 (Zr) -NH2, com fotocatalizador, i la posterior reducció de 4-NP a 4-AP.
D'altra banda, s'ha demostrat que els materials defectuosos amb estructura d'UiO66 poden reduir selectivament els dobles enllaços polaritzats X=Y en presència de gas H2. / [EN] The present doctoral thesis has focused the attention on the synthesis of new MOFs materials obtained either by post-synthetic interchange of previously described MOFs or by heterojunction of stable MOFs having UiO66 structure.
These materials have been applied as photocatalysts for the promising Overall Water Splitting reaction which claims to obtain H2 and O2 stoichiometrically starting from water in the absence of sacrificial agents or deposited metals nanoparticles. The new material UiO66 (Zr/Ce/Ti) showed surprising results in both UV- Visible light and sunlight irradiation conditions.
Interesting results were also obtained in the case of the core-shell named UiO66(Zr)-NH225@UiO66(Ce) which, in the presence of water, when irradiated with both ultraviolet and solar light, allowed to obtain 550 𝝁 mol*g-1 of H2 and 350 𝝁 mol*g-1 of H2 in 24 h respectively, in the same working conditions defined for UiO66 (Zr/Ce/Ti).
In this thesis was presented, for the first time, the possibility of reducing 4NP through a tandem methodology which, first, involves the production of H2 from water in the presence of methanol as a sacrificial agent and UiO66(Zr)-NH2 as a photo-catalyst, and subsequent the 4 NP reduction to 4 AP.
On the other hand, it has been shown that defective materials with UiO66 structure can selectively reduce polarized X=Y double bonds in the presence of H2 gas. / Melillo, A. (2022). Metal-Organic Hybrid Materials with Catalytic and Photocatalytic Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182744
|
64 |
Novel metal organic frameworks : synthesis, characterisation and functionsHaja Mohideen, Mohamed Infas January 2011 (has links)
The synthesis and properties of novel Metal Organic Frameworks were investigated and reported in this thesis. Thirteen new materials have been synthesized and their properties have been discussed with nine of the structures being solved. The most interesting and useful MOF among the thirteen materials is STAM-1, a copper-based Metal Organic Framework in which the starting linker (Benzene-1,3,5-tricarboxylic acid) undergoes selective in situ monoesterification during the synthesis. The monoesterified BTC can be recovered easily from the MOF, opening up MOF synthesis as a “protection” tool for unexpected selectivity in preparative chemistry that is difficult to accomplish using standard organic chemistry approaches. The selective linker derivatisation leads to the formation of a porous MOF with two types of accessible channel; one hydrophilic lined by copper and the other hydrophobic, lined by the ester groups. The unique structure of the pores leads to unprecedented adsorption behaviour, which reacts differently to gases or vapours of dissimilar chemistry and allows them to access different parts of the structure. The structural flexibility of STAM-1 shows significant differences in the kinetics of O₂ and N₂ adsorption, showing potential for new materials to be developed for air separation. Having two types of channel systems, adsorption can be switched between the two channels by judicious choice of the conditions; a thermal trigger to open the hydrophilic channel and a chemical trigger to open the hydrophobic channel. The storage and release capability of NO in STAM-1 was investigated for use in biomedical applications. Successful studies showed the strength of the antibacterial effects of NO loaded STAM-1, by using three different bacterial strains as a test of performance and were found to be bactericidal. Furthermore the antibacterial effects of NO free STAM-1 were also probed and found to be bactericidal even with low concentrations of the material such as 5 wt%. STAM-1 showed some complex magnetic behaviour by displaying strong antiferromagnetic properties at room temperature and ferromagnetic properties at lower temperatures. The antiferromagnetic coupling was observed within the dimer and ferromagnetic coupling between the dimers. This property of ferromagnetism can only be attributed to the corporation of magnetic dimers in the framework. STAM-2 displays a different magnetic behaviour than STAM-1 which shows paramagnetic properties at room temperature and antiferromagnetic properties at lower temperatures. Other novel MOFs were also successfully characterised and their properties were investigated for potential applications.
|
65 |
Effect of guest uptake and high pressure on Zn- and Zr- metal-organic frameworksHobday, Claire Louise January 2017 (has links)
Porous materials are essential to our everyday lives, for example as an effective catalyst in the cracking of crude oil, or as water softeners in washing powder. When developing novel functional porous materials, it is necessary to fully understand their structure-property relationships to maximise their ability to be used in industrially relevant settings. This thesis aims to understand the mechanical and adsorption properties of a class of porous solids metal-organic frameworks (or MOFs), which have many potential applications owing to their tuneable structures. Due to the inherent 3-D crystalline structure of MOFs, a wide range crystallographic techniques were used to determine structure-property relationships. To achieve maximum in-depth structural knowledge, both classical and quantum theoretical approaches were also applied to complement the understanding of both the energetics and structural details. Chapters One and Two begin with an overview of the state of the art studies carried out on MOFs, focusing on the use of high-pressure crystallography to understand their properties. In addition, there is emphasise on the importance of complementary computational methods that are used in the characterisation of MOFs. In Chapter Three, an isostructural series of MOFs (zeolitic imidazolate frameworks, or ZIFs) were studied for methanol adsorption by employing both experimental and molecular simulation techniques. These frameworks are gating materials, where the imidazole linker rotates upon adsorption of guest, and it was found that through ligand substitution the gate opening angle and onset pressure to gating could be tuned. By using high-pressure Xray crystallography the structure of the ZIFs were studied upon the uptake of guest and the degree of ring rotation quantified. In combination with periodic DFT and grand canonical Monte Carlo simulations the energy barrier to rotation and energies of adsorption could be calculated, respectively. Chapter Four focuses on one ZIF in particular, ZIF-8 ((Zn6(MeIm)12, MeIm = 2- methylimidazole) and details the adsorption of a selection of gases into the pores. The experimental method of cryogenic gas loading into a diamond anvil cell in this chapter is novel to MOFs. This method, in combination with molecular crystallography, is used to determine the structural response of the framework to guest-uptake as well as the crystallographic positions of the adsorption sites. In combination with in silico methods, the adsorption energies of guest-sites could be calculated, detailing which interactions drive the gating behaviour. The method of cryogenic loading highlighted how extreme conditions can be used to extract useful information about structural behaviour of MOFs on uptake of gas molecules into the pores, and when used in combination with computational methods, we have a powerful tool to analyse both positions and energies of adsorption sites. With this information, progress can be made in developing MOFs to maximize favourable interactions and lead to the development of MOFs with better selective gas storage properties. Chapter Five focuses on the synthesis and characterisation of the physical properties of a series of Zr-containing MOFs, called UiO-MOFs. The high valency of Zr(IV) and 12-fold coordination of the metal cluster in these materials, are associated with high shear and bulk moduli, which surpass those of other MOFs. A combination of single-crystal nano-indentation, high-pressure X-ray diffraction studies, density functional theory (DFT) calculations, and first-principles molecular dynamics (MD) simulations were used to determine the compressibility, elasticity and hardness of these materials, whose mechanical robustness was correlated to their different structural features, in-particular, how using non-linear linkers between the metal clusters stabilises the framework to compression. Chapter Six expands upon the series of Zr-MOFs in Chapter Five, and looks at how the mechanical properties of these MOFs are affected upon increasing the linker length. The experimentally determined elastics modulus of one of the frameworks, UiO-sdc (Zr6O4(OH)4(sdc)6 where sdc =4,4’-stillbene dicarboxylate), was found to lie above those of other highly porous MOFs. In addition, the elastic modulus was found to decrease linearly as a function of increasing the linker length, extending the structure-property relationships determined in Chapter Five.
|
66 |
New Polynuclear Copper-Pyrazolate Complexes: Towards the Synthesis of Photo- and Redox-Active Metal Organic FrameworksShi, Kaige 12 June 2018 (has links)
The main objectives of this project are the synthesis and redox- or photo-active modification and CO2 adsorption studies of metal-organic frameworks (MOFs) based on Cu3-pyrazolate secondary building units (SBUs). Trinuclear copper(II) complexes of the formula [Cu3(µ3-O)(µ-4-R-pz)3X3]z have been studied extensively due to their redox, magnetic and catalytic properties. In earlier work, we have shown that trinuclear copper(II) complexes of the formula [Cu3(µ3-O)(µ-4-R-pz)3X3]z pz = pyrazolato anion; R = H, CH(O), Cl, Br and NO2; X = Cl, NCS, CH3COO, CF3COO and pyridine – can be oxidized to the corresponding z+1, formally CuII2CuIII, species. In this project, fourteen (14) new copper-pyrazolate complexes of varying nuclearities (Cu3, Cu6, Cu7 and Cu12), terminal ligands (-NO2, py, -N3, -Cl) and bridging ligands (4-Cl-pzH and 4-Ph-pzH) have been synthesized. Efforts have been made to prepare MOFs based on the Cu3(µ3-O)-SBUs. While attempting to design the most suitable SBU for redox-active MOF construction, it was found that the one-electron oxidation of the all-CuII complex [Cu3(µ3-O)(µ-pz)3(NO2)3]2–, [8]2-, was achieved at redox potential more cathodic than any other Cu3(µ3-O)-complexes studied in our laboratory. The mixed-valent compound, [Cu3(µ3-O)(µ-pz)3(NO2)3]–, [8]-, the easiest accessible CuII2CuIII species known to date, was characterized spectroscopically. Compound [8] and analogous [11] release NO almost quantitatively upon the addition of PhSH or acetic acid. The system is catalytic in the presence of excess nitrite.
Before embarking on the study of photo-active MOFs, a simpler model compound – a dimer of trimer [{Cu3(µ3-OH)(µ-4-Cl-pz)3(py)2}2(µ-abp)](ClO4)4 [21], where abp = 4,4’-azopyridine, was synthesized and its photochemistry was studied. The absorption spectra recorded before and after irradiation indicated a structural change. Two dimensional (2D) and three dimensional (3D) materials with {[Cu3(µ3-OH)(µ-4-R-pz)3]2+}n SBUs where R = Ph or Cl , which can potentially undergo cis/trans-isomerization, have been prepared during this project. A Phenyl substituent at 4-position on the pyrazole ligand leads to the formation of new class of 2D sheets. Three new 3D porous MOFs based on {[Cu3(µ3-OH)(µ-4-Cl-pz)3]2+}n SBUs have interpenetrated- lattice structures and are capable of adsorbing CO2 selectively. Compounds FIU-1 and FIU-3 also exhibit hysteretic sorption-desorption profiles indicating the flexibility of the MOFs upon adsorption. Compound FIU-1 demonstrates the usefulness of a hexanuclear CuII -pyrazolate moiety as an SBU for generating 3-fold interpenetrated 3D polymeric network. Complexes FIU-2 and FIU-3 have novel 3-fold interpenetrating 3D hexagonal framework structures. Compound FIU-2 crystallizes in the monoclinic crystal system with the P21/c space group, whereas FIU-3 crystallizes in triclinic space group P . Both structures contain Cu3-SBUs connected by the linkers through the Cu-termini.
|
67 |
Simulation moléculaire de l'interaction de molécules polaires avec des matériaux de la famille des MOFsDe Toni, Marta 13 July 2012 (has links) (PDF)
Mes travaux de thèse s'inscrivent dans le cadre de l'étude de l'adsorption de systèmes moléculaires confinés dans des matériaux nanoporeux. Le confinement d'un fluide a des effets importants sur ses propriétés thermodynamiques car la compétition entre les effets de la taille des pores et les effets d'interface engendre des comportements nouveaux très spécifiques, comme de nouvelles phases et de nouvelles transitions de phase. Ces phénomènes interviennent communément dans de nombreux processus et procédés industriels : échange ionique, séparations sélectives, catalyse hétérogène... En particulier, j'ai étudié par simulation moléculaire les propriétés d'adsorption de molécules polaires d'intérêt industriel (CO2 et H2O) dans une nouvelle classe de matériaux poreux cristallins hybrides organiques-inorganiques dénommés MOFs (Metal-Organic Frameworks). Il s'agit de systèmes avec des propriétés d'adsorption remarquables déterminées par leur variété topologique et versatilité dues à la richesse de la chimie organique et de coordination et au fait qu'ils peuvent être fonctionnalisés avant comme après synthèse. Dans un premier temps je me suis intéressée à l'adsorption du CO2 dans une famille de systèmes ayant tous la même topologie mais des volumes poreux différents, les IRMOFs. J'ai pu ainsi caractériser l'effet du confinement sur leur capacité d'adsorption et un comportement universel a été mis en évidence : la température critique diminue lorsque le confinement augmente. Ensuite, j'ai étudié une nouvelle MOF cationique dénommée Zn2(CBTACN). Après avoir réussi à localiser les anions halogénure extra-charpente (ce qui n'était pas possible expérimentalement), j'ai caractérisé l'adsorption du CO2 dans ce matériau, d'abord comme corps pur et ensuite dans des mélanges. Enfin, je me suis intéressée à la stabilité hydrothermique de ces matériaux, qui est une thématique cruciale pour les applications. En particulier, j'ai observé le mécanisme d'hydratation d'un analogue de la MOF-5 qui se fait en deux étapes. Des effets collaboratifs, qui n'avaient pas été soulignés jusqu'à présent dans la littérature, ont été également mis en évidence.
|
68 |
High-throughput synthesis and application development of water-stable MOFsSchoenecker, Paul M. 12 November 2012 (has links)
Metal-organic frameworks (MOFs) are porous networks of metal-centers connect by organic ligands, which have potential for an array of applications including gas separations and storage, drug delivery, and molecular sensing. A multitude of structures are reported with specific pore geometries and functionalities, but MOFs are not currently implemented in consumer or industrial applications. Two major setbacks have hindered their transition to the applied level. 1) Many MOFs are not stable in the presence of ambient moisture. 2) Most syntheses are costly and take place under batch-style solvothermal conditions. This thesis addresses both of these setbacks and examines the performance potential of water-stable MOFs for selective gas adsorption. A representative set of MOFs are exposed to water, and structural effects are monitored from a before and after comparison to identify properties of water-stable MOFs. A novel continuous-flow MOF synthesis process is reported along with preliminary optimization experiments, which yield direct suggestions for future process improvements. Batch-style scale-up experiments are also conducted for three other MOFs, which provide insight into synthesis phenomena. Application specific results are reported for toxic chemical filtration and carbon dioxide removal from flue gas using MOFs. The thesis concludes by summarizing the experimental findings, discussing the application potential of specific MOFs, and recommending topics for future research projects. Pitfalls observed during this research are also directly discussed along with potential solutions.
|
69 |
Developing design criteria and scale up methods for water-stable metal-organic frameworks for adsorption applicationsJasuja, Himanshu 21 September 2015 (has links)
Metal-organic frameworks (MOFs) are a relatively new class of porous materials, assembled from inorganic metal nodes and organic ligands. MOFs have garnered significant attention in the porous materials and adsorption fields in recent years due to their various attractive features such as high surface areas and pore volumes, tunable and uniform pore sizes, chemically functionalized adsorption sites, and potential for post-synthetic modification. These features give MOFs enormous potential for use in applications such as air purification, methane and hydrogen storage, separations, catalysis, sensing, and drug delivery. Therefore, synthesis and adsorption studies of MOFs have increased tremendously in recent years. Among the aforesaid applications, air purification and air quality control are important topics because existing porous media are ineffective at the adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents. Thus, there is a critical need for radical improvements in these purification systems. MOFs have shown great potential to become next-generation filter media as they outperform the traditional porous materials such as activated carbons and zeolites in the air purification of TICs such as ammonia and sulfur dioxide.
In spite of the numerous desirable attributes of MOFs, the practical use of these new materials in most applications hinges on their stability in humid or aqueous environments. The sensitivity of certain MOFs under humid conditions is well known, but systematic studies of the water stability properties of MOFs are lacking. This information is critical for identifying structural factors that are important for development of next-generation, water stable MOFs. In addition to the water stability issue, difficulty in the scale up of MOF synthesis has also plagued MOFs. Hence, the goal of this Ph.D. dissertation research is to design ammonia-selective, water stable MOFs that can be synthesized on a large scale. This work will have a direct impact on moving the MOF field forward to the commercial level. To achieve the aforementioned goal, this Ph.D. dissertation research has been divided into following three objectives:
(1) Advance our understanding of the water stability of MOFs and develop design criteria for the construction of water stable MOFs.
(2) Design water stable, ammonia-selective MOFs for next-generation chemical, biological, radiological, and nuclear (CBRN) filter media.
(3) Investigate the scale-up of the UiO-66 MOF scaffold.
Through the research efforts over the past four years, it is discovered that it is possible to adjust the water stability of pillared MOFs in both positive and negative directions by proper shielding of the ligand via functional groups. This study is the first of its kind and is of high value for the MOF community. This shielding concept is further extended by synthesizing 4 novel isostructural MOFs with methyl functional groups at different positions on the ligand. For the first time, light is shed on the important distinction between kinetic and thermodynamic water stability and experimental evidence for a kinetically governed water stability mechanism in these MOFs is provided. It is also demonstrated that, using catenation in combination with a pillaring strategy, it is possible to obtain water stable MOFs even when the pillar ligand has lower basicity (pKa value). Ammonia breakthrough measurements have shown that a hydroxyl functionalized Zr-based UiO-66 material is promising as it could offer a method for targeting the removal of specific chemical threats in a chemically stable framework that does not degrade in the presence of water. Large scale synthesis of a water stable MOF, UiO-66, is studied using glass vials and Teflon lined autoclaves. UiO-66 synthesis methods have been refined such that it is now possible to produce more than 70 times the yield obtained from the original synthesis report using the same reaction volume. This would result in a significant reduction of the MOF production cost at the industrial scale.
Methane and hydrogen are ‘clean fuels’ (less CO2 emissions than petroleum) and MOFs are being tested for their on-board storage in cars due to the extremely high storage capacities of MOFs being promising enough to meet the requirements. Hence, more broadly, this Ph.D. dissertation work will lead to commercial applications of MOFs, which can revolutionize a variety of gas separation and storage problems such as CO2 capture, natural gas upgrading, and methane and hydrogen storage for clean fuel technologies. This would greatly reduce the environmental concerns faced by our society today.
|
70 |
NMR-SPEKTROSKOPIE AN FLEXIBLEN UND CHIRALEN METAL-ORGANIC FRAMEWORKS (MOFs)Hoffmann, Herbert C. 05 August 2014 (has links) (PDF)
Es wurden verschiedene NMR-spektrokopische Messungen an flexiblen und chiralen MOFs durchgeführt. Zur Untersuchung der Porensysteme kamen 129Xe-NMR und 13C-NMR an adsorbiertem CO2 zum Einsatz, während die MOF-Gitter und ihre Wechselwirkungen mit adsorbierten Gastmolekülen mittels 13C- und 1H-MAS-NMR-Spektroskopie studiert wurden. Während DUT-8(Ni) Flexibilität zeigt, weist DUT-8(Cu) ein starres Gitter auf. Die Flexibilität der sogenannten Solid-Solutions hängt in ausgeprägter Weise vom Verhältnis der funktionalisierten bdc-Linker 2,5-bme-bdc und db-bdc ab. Dieses Verhältnis hat zudem einen großen Einfluss auf die Orientierung der adsorbierten CO2-Moleküle. Es wurde erstmals eine Methode vorgestellt, die den Festkörper-NMR-spektroskopischen Nachweis chiraler Seitengruppen in chiralen MOFs erlaubt, wie anhand des chiral modifizierten UMCM-1 (ChirUMCM-1) demonstriert wurde. Die Chiralität kann einen NMR-spektroskopisch messbaren Einfluss auf die intrinsische Dynamik des MOF-Gitters ausüben, wie am chiral modifizierten DUT-32 deutlich wurde, dessen chirale Seitengruppe selektiv 15N- und 13C-isotopenmarkiert wurde.
|
Page generated in 0.0304 seconds