1451 |
Etude expérimentale et numérique du comportement hygrothermique de blocs préfabriqués en béton de chanvre / Experimental and numerical study of the hygrothermal behavior of precast hemp concrete blocksSeng, Billy 07 September 2018 (has links)
Le béton de chanvre est un matériau de construction biosourcé pouvant répondre aux problématiques environnementales actuelles. Utilisé comme matériau de remplissage avec une bonne capacité isolante, il possède également la capacité de réguler l'humidité relative intérieure. Son comportement hygrothermique complexe résulte notamment de performances thermiques et hydriques interdépendantes. La prédiction de ces effets est réalisée à l'aide de modélisation et simulation de transferts hygrothermiques. Toutefois, l'utilisation de données d'entrée les plus représentatives possibles de la réalité est nécessaire. Les méthodes de caractérisation courantes ont souvent été développées pour des matériaux conventionnels et peuvent montrer des limites dans le cas de matériaux biosourcés. L'objectif principal de ces travaux est de déterminer les propriétés hygrothermiques d'un bloc de béton de chanvre préfabriqués à l'échelle industrielle, de mieux appréhender cette caractérisation et de décrire son comportement hygrothermique via des simulations numériques. Le matériau étudié est formulé à partir d'un liant pouzzolanique et de granulats de chènevotte. Une partie de ce travail de thèse a donc porté sur la caractérisation des propriétés physiques, thermiques et hydriques du béton de chanvre étudié ainsi que sur les méthodes de mesure. Pour chaque paramètre hygrothermique étudié, plusieurs méthodes ont été confrontées afin d'en évaluer l'impact. Dans la mesure du possible, l'influence de la température et de l'humidité sur les différents paramètres a également été estimée. Un modèle de transferts hygrothermiques est proposé avec une évaluation d'ordre de grandeur dans le cas du béton de chanvre à partir des propriétés de la littérature. Ce modèle est appliqué à une étude expérimentale à l'échelle de la paroi, dans une enceinte bi-climatique, mettant en avant l'impact de la sorption et du changement de phase sur les transferts de chaleur. En ce qui concerne les propriétés thermiques, l'étude expérimentale à l'échelle du matériau met en évidence l'impact significatif du protocole expérimental sur le résultat de mesure, en particulier pour la chaleur massique. Pour les propriétés hydriques, les essais mettent en avant l'intérêt de réaliser une étude paramétrique de type round-robin sur les matériaux biosourcés. [...] / Hemp concrete is a bio-based construction material able to meet current sustainable issues. Used as filling and insulating material, it has the capacity to regulate the indoor relative humidity. Its complex hygrothermal behavior results on interdependent thermal and hydric performances. The prediction of the hygrothermal effect is performed through heat and moisture transfer modeling and simulation. However, the use of representative inputs is necessary. Standard characterization methods have often been developed for usual building material and can show some limitations in the case of bio-based material. The main objective of these works is to determine the hygrothermal properties of a precast hemp concrete produced at industrial scale, have a better understanding of this characterization and describe its hygrothermal behavior through numerical simulations. The studied material is based on pozzolanic binder and hemp aggregates. One part of this work deals with the characterization of the physical, thermal and hydric properties of the studied material and with the measurement methods. For each hygrothermal properties, several methods have been confronted. If possible, the temperature and humidity influences have been appraised. A heat and moisture transfer model is proposed with a scale analysis based on hemp concrete properties from the literature. This model has been applied to wall scale experiments highlighting the impact of sorption and phase change phenomena on the heat transfers. With regards to the thermal properties, the experimental study at material scale highlights the significant impact of the experimental protocol on the result of the measure, particularly for the specific heat capacity. For hydric properties, the studies put forward the interest of performing a parametric round-robin test dedicated to bio-based materials. An air permeability measurement protocol designed for regular concrete has been adapted in order to evaluate the performance of a very permeable material such as the hemp concrete. The numerical model is validated on a test from a standard and a test from the literature. It manages to describe test with usual ambient solicitations performed in the bi-climatic chamber.
|
1452 |
Enhancement of Rainfall-Triggered Shallow Landslide Hazard Assessment at Regional and Site Scales Using Remote Sensing and Slope Stability Analysis Coupled with Infiltration ModelingRajaguru Mudiyanselage, Thilanki Maneesha Dahigamuwa 14 November 2018 (has links)
Landslides cause significant damage to property and human lives throughout the world. Rainfall is the most common triggering factor for the occurrence of landslides. This dissertation presents two novel methodologies for assessment of rainfall-triggered shallow landslide hazard. The first method focuses on using remotely sensed soil moisture and soil surface properties in developing a framework for real-time regional scale landslide hazard assessment while the second method is a deterministic approach to landslide hazard assessment of the specific sites identified during first assessment. In the latter approach, landslide inducing transient seepage in soil during rainfall and its effect on slope stability are modeled using numerical analysis.
Traditionally, the prediction of rainfall-triggered landslides has been performed using pre-determined rainfall intensity-duration thresholds. However, it is the infiltration of rainwater into soil slopes which leads to an increase of porewater pressure and destruction of matric suction that causes a reduction in soil shear strength and slope instability. Hence, soil moisture, pore pressure and infiltration properties of soil must be direct inputs to reliable landslide hazard assessment methods. In-situ measurement of pore pressure for real-time landslide hazard assessment is an expensive endeavor and thus, the use of more practical remote sensing of soil moisture is constantly sought. In past studies, a statistical framework for regional scale landslide hazard assessment using remotely sensed soil moisture has not been developed. Thus, the first major objective of this study is to develop a framework for using downscaled remotely sensed soil moisture available on a daily basis to monitor locations that are highly susceptible to rainfall-
triggered shallow landslides, using a well-structured assessment procedure. Downscaled soil moisture, the relevant geotechnical properties of saturated hydraulic conductivity and soil type, and the conditioning factors of elevation, slope, and distance to roads are used to develop an improved logistic regression model to predict the soil slide hazard of soil slopes using data from two geographically different regions. A soil moisture downscaling model with a proven superior prediction accuracy than the downscaling models that have been used in previous landslide studies is employed in this study. Furthermore, this model provides satisfactory classification accuracy and performs better than the alternative water drainage-based indices that are conventionally used to quantify the effect that elevated soil moisture has upon the soil sliding. Furthermore, the downscaling of soil moisture content is shown to improve the prediction accuracy. Finally, a technique that can determine the threshold probability for identifying locations with a high soil slide hazard is proposed.
On the other hand, many deterministic methods based on analytical and numerical methodologies have been developed in the past to model the effects of infiltration and subsequent transient seepage during rainfall on the stability of natural and manmade slopes. However, the effects of continuous interplay between surface and subsurface water flows on slope stability is seldom considered in the above-mentioned numerical and analytical models. Furthermore, the existing seepage models are based on the Richards equation, which is derived using Darcy’s law, under a pseudo-steady state assumption. Thus, the inertial components of flow have not been incorporated typically in modeling the flow of water through the subsurface. Hence, the second objective of this study is to develop a numerical model which has the capability to model surface, subsurface and infiltration water flows based on a unified approach, employing fundamental fluid dynamics, to assess slope stability during rainfall-induced transient seepage conditions. The developed model is based on the Navier-Stokes equations, which possess the capability to model surface, subsurface and infiltration water flows in a unified manner. The extended Mohr-Coulomb criterion is used in evaluating the shear strength reduction due to infiltration. Finally, the effect of soil hydraulic conductivity on slope stability is examined. The interplay between surface and subsurface water flows is observed to have a significant impact on slope stability, especially at low hydraulic conductivity values. The developed numerical model facilitates site-specific calibration with respect to saturated hydraulic conductivity, remotely sensed soil moisture content and rainfall intensity to predict landslide inducing subsurface pore pressure variations in real time.
|
1453 |
The effect of resource dynamics on invasive annual and native perennial grasses in grasslands of the mid-north of South Australia / Tanja Lenz. / Resource dynamics & grass abundance in mid-north grasslands of South AustraliaLenz, Tanja I. January 2004 (has links)
"July 2004." / Bibliography: leaves 120-136. / vii, 136 leaves : ill. (some col.), maps ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Investigates the effects of soil moisture dynamics on the growth and interactions between invasive annual grasses and native perennial grasses in the mid-north of South Australia. At most sites annual grass abundance was positively correlated with rainfall, soil moisture after rainfall and higher soil productivity. Perennial grass abundance was negatively correlated with annual grass abundance and soil moisture after rainfall, and was weakly positively correlated with percentage summer rainfall, elevation, radiation, gravel and slope. Overall perennial grasses responded little to the environmental variables investigated, but strongly to annual grass abundance, while for annual grasses soil moisture was the driving variable. / Thesis (Ph.D.)--University of Adelaide, School of Earth and Environmental Sciences, Discipline of Environmental Biology, 2004
|
1454 |
Performance of slash pine (Pinus elliottii Engelm.) containerized rooted cuttings and bare-root seedlings established on five planting dates in the flatlands of western LouisianaAkgul, Alper 29 August 2005 (has links)
The forest product industry is keenly interested in extending the normal planting season, as well as in the comparative field performance of standard nursery bare-root seedlings and containerized rooted cuttings. The effect of seasonal planting dates on survival, above and belowground biomass allocation, water relations, gas exchange attributes and foliar carbon isotope composition (δ13C) of two stock types of slash pine (Pinus elliottii Engelm.) were examined. Slash pine bare-root seedlings (BRS) and containerized rooted cuttings (CRC) were hand planted in September, November, January, March and April in three consecutive planting seasons (2000-2001, 2001-2002 and 2002-2003) on three sites with silt loam topsoils in southwestern Louisiana. First-year mean survival of CRC across all planting dates and sites was consistently high at 96 to 98%, whereas BRS survival was significantly (P < 0.0001) lower at 59 to 81% and highly variable among study sites and dates through three planting seasons. Generally, there was a negative relationship between soil moisture at the time of planting and first-year survival of BRS planted September through March in 2001-2002 and 2002-2003 planting seasons, whereas the opposite was observed only for BRS planted in April 2002 and 2003. Survival of CRC was affected very little by the variation in soil moisture. Containerized rooted cuttings had higher early above and belowground biomass, and height and diameter than did BRS. However, three years after planting the size differences between stock types disappeared or became negligible. Early size differences among trees planted September through March also decreased after three years, although September trees were tallest. Growth of the April-planted trees was poor compared to trees planted in other months. Late-planted April trees had higher δ13C values, and higher water-use efficiency in the first growing season compared to earlier planted trees. Differences in δ13C values among the planting dates disappeared in the second growing season. Net photosynthesis rates did not differ considerably between stock types or among planting dates in the second and third growing seasons. This study indicates that it is possible to extend the planting season to as early as September and as late as March by using CRC.
|
1455 |
Étude du séchage convectif de boues de station d'épuration - Suivi de la texture par microtomographie à rayons XLéonard, Angélique 07 February 2003 (has links)
Cette thèse sinscrit dans une dynamique de recherche qui a vu le jour assez récemment dans le domaine du séchage des boues de station dépuration. Conscientes des problèmes de gestion que va entraîner laugmentation des quantités de boue produites suite à lapplication de la législation européenne, différentes équipes de recherche se sont lancées dans létude du séchage des boues. Considérant que lépandage agricole et la valorisation énergétique demeureront les principales filières délimination pour les boues, le séchage constitue, dans les deux cas, une étape essentielle après la déshydratation mécanique. Lambition de ce travail est de contribuer à améliorer les connaissances dans le domaine du séchage convectif des boues et à mieux appréhender les changements de texture qui surviennent au cours du séchage à laide de la microtomograhie à rayons X.
Le chapitre I décrit le contexte général dans lequel se situe le travail, cest-à-dire lépuration des eaux usées et la production de boues qui en résulte. La place du séchage dans les différentes filières de valorisation, compte tenu des exigences de la législation européenne, est présentée. Ensuite, un état des connaissances dans le domaine du séchage des boues ainsi quune présentation des technologies de séchage actuellement mises en oeuvre sont effectués. Ce chapitre met en évidence que létat divisé de la matière se situe au cur du travail et pose les objectifs majeurs de la présente étude.
Le chapitre II est consacré à la définition des notions essentielles à létude du séchage. Le concept disotherme de sorption à leau est présenté avant de passer en revue les différents types deau que lon trouve dans les boues. Les modes de transport deau pendant le séchage sont ensuite rappelés. La suite du chapitre se concentre sur la manière dont les données de séchage sont exploitées et reprend, brièvement, les progrès effectués en modélisation de la cinétique. La fin du chapitre décrit le retrait qui constitue un phénomène indissociable du séchage des matériaux déformables dont font partie les boues.
Lensemble des dispositifs expérimentaux et des méthodes utilisés au long de ce travail sont décrits dans le chapitre III. Les principaux dispositifs expérimentaux sont la cellule de filtration sous pression, le système dextrusion des échantillons, le microsécheur convectif et le microtomographe à rayons X. Les méthodes décrites concernent la caractérisation des boues, la déshydratation des boues, le filtrage des courbes de séchage, lexploitation des coupes tomographiques par analyse dimages et la manière de rassembler les informations issues du séchage et de la microtomographie.
Le chapitre IV est consacré au développement dune procédure de conditionnement et de déshydratation permettant dobtenir une boue déshydratée dont la siccité est la plus élevée et la plus reproductible possible. La mise au point de cette procédure permet deffectuer cette étude sur des boues réelles. Les boues sont prélevées après létape dépaississement dans deux stations dépuration gérées par lAIDE, à Retinne et à Embourg. Les gâteaux de boue obtenus sont ensuite caractérisés : les propriétés rhéologiques sont déterminées ainsi que le taux deau liée par lintermédiaire des isothermes de désorption à leau. Des essais de séchage sur des échantillons extrudés à partir du gâteau de filtration montrent que les conditions opératoires de conditionnement et de déshydratation des boues nont pas dinfluence significative sur la cinétique. La procédure de production déchantillons mise au point (conditionnement-filtration-extrusion) est utilisée dans toute la suite du travail.
Tout au long du chapitre V, linfluence de trois variables opératoires (la température, la vitesse superficielle et lhumidité absolue de lair) sur le retrait, la cinétique de séchage, la fissuration et le développement de profils dhumidité au cours du séchage dextrudats de chacune des deux boues est étudiée. Pour ce faire, les données issues du microsécheur et du microtomographe sont exploitées conjointement. Une analyse multi-zones permet de relier différents phénomènes observés se produisant de manière simultanée. Le développement de résistances intragranulaires au transfert, lapparition de gradients dhumidité à la paroi et le phénomène de fissuration sont en effet liés.
Le chapitre VI aborde une caractérisation plus détaillée de la texture des échantillons, principalement dans leur état séché. À cet effet, des techniques telles la microscopie électronique à balayage, la mesure des isothermes dadsorption-désorption dazote et la porosimétrie au mercure sont utilisées en plus de la microtomographie.
Le travail se termine par une conclusion rassemblant lensemble des résultats et par lénoncé de perspectives qui pourraient constituer une suite intéressante à cette étude.
This thesis comes within a recent research dynamic in the field of sludge drying, according to European requirements concerning urban wastewater treatment and landfilling of biodegradable materials. Considering landspreading and utilization for energy purposes as the two major issues to eliminate sludges, drying constitutes, in both cases, an essential step after mechanical dewatering. Despite obvious economic, industrial and environmental interests, rather few studies have been devoted to wastewater sludge drying till lately. This work aims to improve the knowledge in the field of sludge drying and to better apprehend the textural changes that occur during drying by using X-ray microtomography.
A first part of the work is dedicated to the development of a method allowing the production of sludge samples with a reproducible dryness, in order to realize the study on real sludges. Sludges are collected after secondary settling and thickening in two domestic wastewater treatment plants near university. Conditioning and mechanical dewatering are realized in the laboratory. Filtration cakes are characterized by different techniques : rheology, sorption isotherms, Rheological measurements indicate that, for a same sludge, elastic and viscous modulus only depends on the cake dryness. Drying experiments performed on individual cylindrical extrudates obtained from the cake show that operating conditions used for conditioning (polyelectrolyte dose) and dewatering (filtration pressure drop) have no significant influence on drying kinetics.
The next part of the work shows that X-ray microtomography, despite this technique is still few used in chemical engineering, is a choice tool to follow the textural changes of individual samples submitted to convective drying. Contrary to methods traditionally or newly used (caliper, volume displacement methods, NMR,), X-ray microtomography is a non destructive, accurate and easy to use technique. The analysis of the images obtained by microtomography allows quantifying the shrinkage of the sample, the cracks and the moisture gradients at the sample wall at successive drying levels. The study of the influence of three operating variables (temperature, superficial velocity and absolute humidity of air) on the shrinkage, the development of cracks and moisture gradients is performed in a convective microdryer specially designed in the laboratory. Extragranular heat and mass transfer coefficients, intragranular diffusion coefficient and the water evaporation capacity are estimated from experimental data. A multi-zone analysis proposes to relate the different phenomena observed. Moisture gradients are induced by internal diffusional limitations and cause mechanical stresses. Cracks appear when mechanical stress exceeds the breakage level. Results show clearly that the crack extent depends on the value of the moisture gradients.
The last part of the work deals with a detailed textural characterization of the dried samples. Several characterization techniques (scanning electron microscopy, mercury porosimetry, analysis of N2 adsorption-desorption isotherms, X-ray microtomography) show that the two sludges considered in the study present very different final textures. 3D images and binary images of cross sections indicate, among others, that the cracks developed during drying have different shapes and configurations. Morphological analysis of these cracks gives some ideas about the way cracks develop and brings to the fore a relation between texture and drying kinetics.
Although the presence of cracks is not of the highest importance for the final quality of dried sludges, the methodology developed in this thesis can be applied to a large variety of other soft materials (food, ceramics,) for which crack formation has to be avoided because it impairs the final quality of the dried material. In the future, a fully coupled thermo-hydro-mechanical model will be implemented in a Finite Element code to quantify the evolution of the stress tensor versus the drying level especially at the onset of cracks formation. Results obtained in this thesis will allow validating the model.
|
1456 |
Moisture and dust in lighting equipment : an investigation of customer perception and technical solutions / Fukt och damm i belysningsartiklar : en undersökning av kundacceptans och tekniska lösningarNilson, Joel, Runosson, David January 2013 (has links)
Purpose To investigate the possibility to reduce the number of failures caused by moisture and dust ingress in lighting equipment by looking towards customer acceptance and warranty claims, and then translate the result to technical attributes. Methodology The methodology is set up to be a part of a Design for Six Sigma project including the steps up to Concept development and business/customer approval. Known product development tools are used to evaluate existing techniques and generate new concepts. Customer analysis is done by surveys and investigating warranty claims. Result & Conclusions The customer analysis in this thesis show that Brazil and to some extent UK is the countries where the problem is seen as most severe. It also shows that complaints regarding dust are far more common than complaints regarding moisture when it comes to lamps placed at the lower part at the front of the truck. When the results from the customer analysis are compared with the technical aspects it shows that the most beneficial way to deal with the problem is to create a good air flow while still keeping the pore size, which could be done by using membranes and the help from CFD (Computational Fluid Dynamics) simulations. Trapping solutions are also welcomed by the customer as long as they can be part of the regular service. / Syfte Att undersöka behov och möjligheter att reducera problem med fukt och damminträngning i exteriöra belysningsartiklar på lastbilar genom att titta på kundacceptans och garantiärenden samt översätta detta till tekniska attribut. Metod Arbetet är upplagt som en del av ett Design for Six Sigma-projekt och innefattar stegen fram till Concept development and business/customer approval. Kända produktutvecklingsverktyg används för att ta fram underlag till konceptgenerering. Kundanalys utförs med hjälp av enkäter och undersökningar av garantiärenden. Resultat & slutsats Kundanalysen i denna examensrapport visar att Brasilien och Storbritannien är de länder där problemet uppfattas som störst. Den visar också att klagomål gällande damm är mycket vanligare än klagomål gällande fukt när det gäller lyktor placerade i den nedre delen i fronten på lastbilen. När resultaten från kundanalysen jämförs med de tekniska aspekterna finner man att det mest gynnsamma sättet att ta sig an problemet är att försöka få bra ett bra luftflöde i lyktorna men samtidigt minimera porstorleken. Detta kan man åstadkomma med hjälp av membran och CFD (Computational Fluid Dynamics) simuleringar. Lösningar som handlar om att fånga upp dammet och fukten accepteras också av kunden så länge som detta kan lösas med hjälp av den vanliga servicen.
|
1457 |
Water balance of a feedlotWhite, Lisa Nicole 01 March 2006
The overall purpose of this study was to define the water balance of feedlot pens in a Saskatchewan cattle feeding operation for a one year period. Although the initial intention of the study was focused upon an active feedlot, cattle were removed from the pens in July 2003. Therefore, the year of analysis was conducted on the manured surface of an inactive feedlot. The water balance was also performed on a scraped soil surface, since manure is removed from the pens and spread on agricultural land, leaving the pen surfaces bare for a short period of time each year. <p>During the monitoring period (Sept. 2003 to Aug. 2004), 313 mm of precipitation was received at the feedlot, but only 84 mm of that total was received before June 2004. Winter precipitation was very low (33 mm) and there was no observed runoff from it. Runoff collection weirs in operation for only part of the summer recorded no runoff. The Green-Ampt and USDA SCS runoff models, as well as a snowmelt runoff equation, were used to predict runoff from both the manure pack, as well as the scraped soil surface. Using manure and soil hydraulic parameters determined in the laboratory (from falling head permeameter measurements) and the field (from rainfall simulations), as well as incorporating the greatest 24 hour rainfall amounts and 30 minute intensities experienced at the feedlot, the USDA model found that 29 mm of runoff would occur from the scraped soil surface. Additionally, snowmelt runoff was estimated to be 19 mm for the winter precipitation received. Drainage beneath the 0.6 m soil depth was negligible and the top 0.6 m of soil experienced an increase in moisture of 54 mm. Finally, 211 mm was lost as evaporation. For the manure pack, no runoff was predicted using the Green-Ampt and USDA SCS models and snowmelt runoff equation, which corresponded well to the lack of runoff measured both from the weir and rainfall simulations. Drainage beneath 0.6 m soil depth was negligible. Of the 313 mm of precipitation that fell during the study year, 42 mm was stored within the manure pack and the rest was lost as evaporation (271 mm).
|
1458 |
Non-contact measurement of soil moisture content using thermal infrared sensor and weather variablesAlshikaili, Talal 19 March 2007
The use of remote sensing technology has made it possible for the non-contact measurement of soil moisture content (SMC). Many remote sensing techniques can be used such as microwave sensors, electromagnetic waves sensors, capacitance, and thermal infrared sensors. Some of those techniques are constrained by their high fabrication cost, operation cost, size, or complexity. In this study, a thermal infrared technique was used to predict soil moisture content with the aid of using weather meteorological variables. <p>The measured variables in the experiment were soil moisture content (%SMC), soil surface temperature (Ts) measured using thermocouples, air temperature (Ta), relative humidity (RH), solar radiation (SR), and wind speed (WS). The experiment was carried out for a total of 12 soil samples of two soil types (clay/sand) and two compaction levels (compacted/non-compacted). After data analysis, calibration models relating soil moisture content (SMC) to differential temperature (Td), relative humidity (RH), solar radiation (SR), and wind speed (WS) were generated using stepwise multiple linear regression of the calibration data set. The performance of the models was evaluated using validation data. Four mathematical models of predicting soil moisture content were generated for each soil type and configuration using the calibration data set. Among the four models, the best model for each soil type and configuration was determined by comparing root mean of squared errors of calibration (RMSEC) and root mean of squared errors of validation (RMSEV) values. Furthermore, a calibration model for the thermal infrared sensor was developed to determine the corrected soil surface temperature as measured by the sensor (Tir) instead of using the thermocouples. The performance of the thermal infrared sensor to predict soil moisture content was then tested for sand compacted and sand non-compacted soils and compared to the predictive performance of the thermocouples. This was achieved by using the measured soil surface temperature by the sensor (Tir), instead of the measured soil surface temperature using the thermocouples to determine the soil-minus-air temperature (Td). The sensor showed comparable prediction performance, relative to thermocouples. <p>Overall, the models developed in this study showed high prediction performance when tested with the validation data set. The best models to predict SMC for compacted clay soil, non-compacted clay soil, and compacted sandy soil were three-variable models containing three predictive variables; Td, RH, and SR. On the other hand, the best model to predict SMC for compacted sandy soil was a two-variable model containing Td, and RH. The results showed that the prediction performance of models for predicting SMC for the sandy soils was superior to those of clay soils.
|
1459 |
Implications of Lateral Flow Generation on Land-Surface Scheme FluxesSnelgrove, Kenneth Ross January 2002 (has links)
This thesis details the development and calibration of a model created by coupling a land surface simulation model named CLASS with a hydrologic model named WATFLOOD. The resulting model, known as WatCLASS, is able to serve as a lower boundary for an atmospheric model. In addition, WatCLASS can act independently of an atmospheric model to simulate fluxes of energy and moisture from the land surface including streamflow. These flux outputs are generated based on conservation equations for both heat and moisture ensuring result continuity. WatCLASS has been tested over both the data rich BOREAS domains at fine scales and the large but data poor domain of the Mackenzie River at coarse scale. The results, while encouraging, point to errors in the model physics related primarily to soil moisture transport in partially frozen soils and permafrost. Now that a fully coupled model has been developed, there is a need for continued research by refining model processes and test WatCLASS's robustness using new datasets that are beginning to emerge.
Hydrologic models provide a mechanism for the improvement of atmospheric simulation though two important mechanisms. First, atmospheric inputs to the land surface, such as rainfall and temperature, are transformed by vegetation and soil systems into outputs of energy and mass. One of these mass outputs, which have been routinely measured with a high degree of accuracy, is streamflow. Through the use of hydrologic simulations, inputs from atmospheric models may be transformed to streamflow to assess reliability of precipitation and temperature. In this situation, hydrologic models act in an analogous way to a large rain gauge whose surface area is that of a watershed. WatCLASS has been shown to be able to fulfill this task by simulating streamflow from atmospheric forcing data over multi-year simulation periods and the large domains necessary to allow integration with limited area atmospheric models.
A second, more important, role exists for hydrologic models within atmospheric simulations. The earth's surface acts as a boundary condition for the atmosphere. Besides the output of streamflow, which is not often considered in atmospheric modeling, the earth's surface also outputs fluxes of energy in the form of evaporation, known as latent heat and near surface heating, known as sensible heat. By simulating streamflow and hence soil moisture over the land surface, hydrologic models, when properly enabled with both energy and water balance capabilities, can influence the apportioning of the relative quantities of latent and sensible heat flux that are required by atmospheric models. WatCLASS has shown that by improving streamflow simulations, evaporation amounts are reduced by approximately 70% (1271mm to 740mm) during a three year simulation period in the BOREAS northern old black spruce site (NSA-OBS) as compared to the use of CLASS alone.
To create a model that can act both as a lower boundary for the atmosphere and a hydrologic model, two choices are available. This model can be constructed from scratch with all the caveats and problems associated with proving a new model and having it accepted by the atmospheric community. An alternate mechanism, more likely to be successfully implemented, was chosen for the development of WatCLASS. Here, two proven and well tested models, WATFLOOD and CLASS, were coupled in a phased integration strategy that allowed development to proceed on model components independently. The ultimate goal of this implementation strategy, a fully coupled atmospheric - land surface - hydrologic model, was developed for MC2-CLASS-WATFLOOD. Initial testing of this model, over the Saguenay region of Quebec, has yet to show that adding WATFLOOD to CLASS produces significant impacts on atmospheric simulation. It is suspected, that this is due to the short term nature of the weather simulation that is dominated by initial conditions imposed on the atmospheric model during the data assimilation cycle.
To model the hydrologic system, using the domain of an atmospheric model, requires that methods be developed to characterize land surface forms that influence hydrologic response. Methods, such as GRU (Grouped Response Unit) developed for WATFLOOD, need to be extended to taken advantage of alternate data forms, such as soil and topography, in a way that allows parameters to be selected <I>a priori</I>. Use of GIS (Geographical Information System) and large data bases to assist in development of these relationships has been started here. Some success in creating DEMs, (Digital Elevation Model) which are able to reproduce watershed areas, was achieved. These methods build on existing software implementations to include lake boundaries information as a topographic data source. Other data needs of hydrologic models will build on relationships between land cover, soil, and topography to assist in establishing grouping of these variables required to determine hydrologic similarity. This final aspect of the research is currently in its infancy but provides a platform from which to explore for future initiatives.
Original contributions of this thesis are centered on the addition of a lateral flow generation mechanism within a land surface scheme. This addition has shown a positive impact on flux returns to the atmosphere when compared to measured values and also provide increased realism to the model since measured streamflow is reproduced. These contributions have been encapsulated into a computer model known as WatCLASS, which together with the implementation plan, as presented, should lead to future atmospheric simulation improvements.
|
1460 |
Implications of Lateral Flow Generation on Land-Surface Scheme FluxesSnelgrove, Kenneth Ross January 2002 (has links)
This thesis details the development and calibration of a model created by coupling a land surface simulation model named CLASS with a hydrologic model named WATFLOOD. The resulting model, known as WatCLASS, is able to serve as a lower boundary for an atmospheric model. In addition, WatCLASS can act independently of an atmospheric model to simulate fluxes of energy and moisture from the land surface including streamflow. These flux outputs are generated based on conservation equations for both heat and moisture ensuring result continuity. WatCLASS has been tested over both the data rich BOREAS domains at fine scales and the large but data poor domain of the Mackenzie River at coarse scale. The results, while encouraging, point to errors in the model physics related primarily to soil moisture transport in partially frozen soils and permafrost. Now that a fully coupled model has been developed, there is a need for continued research by refining model processes and test WatCLASS's robustness using new datasets that are beginning to emerge.
Hydrologic models provide a mechanism for the improvement of atmospheric simulation though two important mechanisms. First, atmospheric inputs to the land surface, such as rainfall and temperature, are transformed by vegetation and soil systems into outputs of energy and mass. One of these mass outputs, which have been routinely measured with a high degree of accuracy, is streamflow. Through the use of hydrologic simulations, inputs from atmospheric models may be transformed to streamflow to assess reliability of precipitation and temperature. In this situation, hydrologic models act in an analogous way to a large rain gauge whose surface area is that of a watershed. WatCLASS has been shown to be able to fulfill this task by simulating streamflow from atmospheric forcing data over multi-year simulation periods and the large domains necessary to allow integration with limited area atmospheric models.
A second, more important, role exists for hydrologic models within atmospheric simulations. The earth's surface acts as a boundary condition for the atmosphere. Besides the output of streamflow, which is not often considered in atmospheric modeling, the earth's surface also outputs fluxes of energy in the form of evaporation, known as latent heat and near surface heating, known as sensible heat. By simulating streamflow and hence soil moisture over the land surface, hydrologic models, when properly enabled with both energy and water balance capabilities, can influence the apportioning of the relative quantities of latent and sensible heat flux that are required by atmospheric models. WatCLASS has shown that by improving streamflow simulations, evaporation amounts are reduced by approximately 70% (1271mm to 740mm) during a three year simulation period in the BOREAS northern old black spruce site (NSA-OBS) as compared to the use of CLASS alone.
To create a model that can act both as a lower boundary for the atmosphere and a hydrologic model, two choices are available. This model can be constructed from scratch with all the caveats and problems associated with proving a new model and having it accepted by the atmospheric community. An alternate mechanism, more likely to be successfully implemented, was chosen for the development of WatCLASS. Here, two proven and well tested models, WATFLOOD and CLASS, were coupled in a phased integration strategy that allowed development to proceed on model components independently. The ultimate goal of this implementation strategy, a fully coupled atmospheric - land surface - hydrologic model, was developed for MC2-CLASS-WATFLOOD. Initial testing of this model, over the Saguenay region of Quebec, has yet to show that adding WATFLOOD to CLASS produces significant impacts on atmospheric simulation. It is suspected, that this is due to the short term nature of the weather simulation that is dominated by initial conditions imposed on the atmospheric model during the data assimilation cycle.
To model the hydrologic system, using the domain of an atmospheric model, requires that methods be developed to characterize land surface forms that influence hydrologic response. Methods, such as GRU (Grouped Response Unit) developed for WATFLOOD, need to be extended to taken advantage of alternate data forms, such as soil and topography, in a way that allows parameters to be selected <I>a priori</I>. Use of GIS (Geographical Information System) and large data bases to assist in development of these relationships has been started here. Some success in creating DEMs, (Digital Elevation Model) which are able to reproduce watershed areas, was achieved. These methods build on existing software implementations to include lake boundaries information as a topographic data source. Other data needs of hydrologic models will build on relationships between land cover, soil, and topography to assist in establishing grouping of these variables required to determine hydrologic similarity. This final aspect of the research is currently in its infancy but provides a platform from which to explore for future initiatives.
Original contributions of this thesis are centered on the addition of a lateral flow generation mechanism within a land surface scheme. This addition has shown a positive impact on flux returns to the atmosphere when compared to measured values and also provide increased realism to the model since measured streamflow is reproduced. These contributions have been encapsulated into a computer model known as WatCLASS, which together with the implementation plan, as presented, should lead to future atmospheric simulation improvements.
|
Page generated in 0.0367 seconds