• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 742
  • 228
  • 217
  • 96
  • 62
  • 49
  • 35
  • 35
  • 35
  • 35
  • 35
  • 34
  • 19
  • 12
  • 9
  • Tagged with
  • 1819
  • 919
  • 230
  • 214
  • 213
  • 173
  • 167
  • 122
  • 102
  • 93
  • 92
  • 87
  • 86
  • 84
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Measurements of moisture suction in hot mix asphalt mixes

Kassem, Emad Abdel-Rahman 30 October 2006 (has links)
The presence of moisture in hot mix asphalt (HMA) causes loss of strength and durability of the mix, which is referred to as moisture damage. This study deals with the development of experimental methods for measuring total suction in HMA, which can be defined as the free energy state of water in HMA mixes. The total suction is related to the ability of moisture to get into the mix under unsaturated conditions; it is also related to the ability of the mix to retain moisture. Soil suction has been studied extensively. However, suction in HMA as a porous material and its relationship to moisture damage have not been studied. The development of a procedure to measure the total suction in HMA mixes is the first objective of this research. The second objective is to relate suction measurements to physical and chemical properties of the mixtures. The objectives were achieved in two phases. In the first phase, the total suction was measured in HMA specimens with different types of aggregates (limestone and granite), and with different air void distributions and aggregate gradations. The results of this phase showed that the drying test using a 60 oC temperature-controlled room is the proper setup for measuring the total suction in HMA using thermocouple psychrometers. The characteristics of suction-moisture content curves were found to be related to the air void distribution in HMA. In the second phase, total suction was measured in sand asphalt specimens. These specimens had different combinations of aggregates and binders with different bond energies and exhibited different field performance in terms of resistance to moisture damage. The suction measurements in sand asphalt specimens were used to calculate the moisture diffusion coefficient. The results revealed that water diffused into sand asphalt specimens that are known to have poor resistance to moisture damage faster than those that are known to have good resistance to moisture damage
502

Mapping in-field cotton fiber quality and relating it to soil moisture

Ge, Yufeng 15 May 2009 (has links)
The overarching goal of this dissertation project was to address several fundamental aspects of applying site-specific crop management for fiber quality in cotton production. A two-year (2005 and 2006) field study was conducted at the IMPACT Center, a portion of the Texas A&M Research farm near College Station, Texas, to explore the spatial variability of cotton fiber quality and quantify its relationship with in-season soil moisture content. Cotton samples and in-situ soil moisture measurements were taken from the sampling locations in both irrigated and dry areas. It was found that generally low variability (CV < 10%) existed for all of the HVI (High Volume Instrument) fiber parameters under investigation. However, an appreciable level of spatial dependence among fiber parameters was discovered. Contour maps for individual fiber parameters in 2006 exhibited a similar spatial pattern to the soil electrical conductivity map. Significant correlations (highest r = 0.85) were found between most fiber parameters (except for micronaire) and in-season soil moisture in the irrigated areas in 2005 and in the dry area in 2006. In both situations, soil moisture late in the season showed higher correlation with fiber parameters than that in the early-season. While this relationship did not hold for micronaire, a non-linear relationship was apparent for micronaire in 2006. This can be attributed to the boll retention pattern of cotton plants at different soil moisture levels. In addition, a prototype wireless- and GPS-based system was fabricated and developed for automated module-level fiber quality mapping. The system is composed of several subsystems distributed among harvest vehicles, and the main components of the system include a GPS receiver, wireless transceivers, and microcontrollers. Software was developed in C language to achieve GPS signal receiving, wireless communication, and other auxiliary functions. The system was capable of delineating the geographic boundary of each harvested basket and tracking it from the harvester basket to the boll buggy and the module builder. When fiber quality data are available at gins or classing offices, they can be associated with those geographic boundaries to realize fiber quality mapping. Field tests indicated that the prototype system performed as designed. The resultant fiber quality maps can be used to readily differentiate some HVI fiber parameters (micronaire, color, and loan value) at the module level, indicating the competence of the system for fiber quality mapping and its potential for site-specific fiber quality management. Future improvements needed to make system suitable for a full-scale farming operation are suggested.
503

Substrate Moisture Content Effects on Growth and Shelf Life of Angelonia angustifolia

Bingham, Alison 2012 May 1900 (has links)
Wilting during shelf life is a major cause of postharvest shrink for bedding plants shipped long distances from production greenhouses to retail outlets. The objective of this research was to determine if irrigation at lower, constant substrate moisture content (SMC) during greenhouse production would be a feasible way to acclimate plants for reduced shrinkage during shelf life, while potentially conserving irrigation water. Rooted plugs of Angelonia angustifolia 'Angelface Blue' were grown in greenhouse production until a marketable stage in substrates irrigated at SMC levels of 10, 20, 30, and 40% using a controlled irrigation system. At the end of the greenhouse production stage, plants were irrigated to container capacity and subjected to a simulated shipping environment, in shipping boxes in the dark for two days. After shipping, plants were placed back in the greenhouse and watered minimally to simulate a retail environment. Data was taken at the end of each stage i.e. greenhouse production, simulated shipping, and simulated retail. Parameters measured at the end of the production stage were fresh and senesced flower number, stem number, pre-dawn and mid-day water potential, SPAD meter readings (Experiment 2), and plant height and node number segmented into vegetative, flowering, and bud area. Plant quality was observed and rated. At the end of the simulated retail stage, the same data was taken, along with fresh and dry shoot and root weight. Results indicated that as SMC decreased from 40 to 10%, plants were shorter in height, but had proportional flowering sections (Experiment 1) or more compact flowering sections (Experiment 2). The volume of water received by the 40% SMC plants was three times greater (Experiment 1) and 12 times greater (Experiment 2) than the 20% SMC plants during greenhouse production, and two times greater (Experiment 1) and nine time greater (Experiment 2) during simulated retail. Additionally, the 40% SMC plants used 15 liters (Experiment 1) and 38 liters (Experiment 2) of water during greenhouse production compared to the 20% SMC plants using only three liters in both experiments. During simulated retail the 40% SMC plants used six liters (Experiment 1) and nine liters (Experiment 2) of water while the 20% SMC plants used five liters (Experiment 1) and three liters (Experiment 2) of water. During production, mid-day water potentials decreased as the SMC levels decreased, but at the end of the simulated retail (Experiment 1), the mid-day water potentials were all the same, suggesting plants that were drought stressed during production area were acclimated to lower water levels experienced in retail settings. Overall, the 20% SMC treatment produced the best postharvest quality plant due to reduced plant height without detrimental effects on flowering. The results demonstrate that while conserving water, controlled irrigation at a medium-low SMC can produce high quality plants that have equal shelf life to those that are irrigated at high levels.
504

Evaluation of hydrostatic pressure and storage effects on Cheddar cheese microstructure by thermal conductivity, differential scanning calorimetry and enzymatic proteolysis

Yang, Jie 03 May 1999 (has links)
Graduation date: 1999
505

Water and solute transport : modeling and application to water conservation in layered soil

Mohammed, Fareed H. A. N. 23 July 1992 (has links)
Sandy soils are among the least productive soils because of their inability to store adequate water for plant growth. Their high percolation rate not only allows water to move quickly beyond the root zone, but also washes nutrients below the reach of plant roots. High evaporation occurs from the soil surface. Many acres of these soils around the world are left out of crop production. This study is a contribution to bring these soils into production by increasing their ability to hold more water in the root zone. Several promising methods of enhancing these soils were simulated, surface mulch, buried barrier layer, and a combination of both. The effects of varying texture and thickness of these layers and varying evaporative demand were investigated. The impact of such modifications on solute distribution in the soil was also simulated. A simulation model of water and solute transport in layered soils was developed for this purpose. The Richards equation for one-dimensional water transport in unsaturated soils was modified to account for the water jump between the layers. The solute transport equation was also modified by implementing the same theory of water infiltration in layered soil to the solute convective transport. The Crank-Nicolson scheme was used to solve the transport equations with the help of the Newton-Raphson iteration method. The results of the simulation show that the proposed methods increase water content in the sandy soil by up to 45%. The combination of barriers, which decreases leaching and evaporation was the most effective in conserving water. Most of the contribution came from the influence of the mulch layer in suppressing water losses by evaporation. The combination method traps solute in the root zone, and this decreased solute leaching from the soil may limit plant growth in saline soils. / Graduation date: 1993
506

Design of capillary wick pore-water samplers and their effects on solute travel time and dispersion

Knutson, John H. 14 September 1993 (has links)
Graduation date: 1994
507

Shallow soil moisture - ground thaw interactions and controls

Guan, Xiu Juan (May) 19 January 2010
Soil moisture and ground thaw state are both indicative of a hillslopes ability to transfer water. In cold regions in particular, it is widely known that the wetness of surface soils and depth of ground thaw are important for runoff generation, but the diversity of interactions between surface soil moisture and ground thaw themselves has not been studied. To fill this knowledge gap, detailed shallow soil moisture and thaw depth surveys were conducted along systematic grids at the Baker Creek Basin, Northwest Territories. Multiple hillslopes were studied to determine how the interactions differed along a spectrum of topological, typological and topographic situations (T³ template). Results did not show a simple relationship between soil moisture and ground thaw as was expected. Instead, correlation was a function of wetness such that the correlation between soil moisture and ground thaw improved with site wetness. To understand why differences in soil moisture and ground thaw state arose, water and energy fluxes were examined for these subarctic study sites to discern the key processes controlling the patterns observed. Results showed that the key control in variable soil moisture and frost table interactions among the sites was the presence of surface water. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extents, modified Péclet numbers indicated that the relative influence of external and internal hydrological processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to the dominance of conductive thermal energy over advective energy for ground thaw. A quantitative explanation for the shallow soil moisture-ground thaw patterns was provided by linking hydrological processes and hillslope storage capacity with the calculated water and energy fluxes as well as the modified Péclet number. These results suggest that the T&#x00B3; template and the modified Péclet number could be very useful parameters for differentiating landscape components in modeling soil moisture and frost table heterogeneity in cold regions.
508

Run-around energy recovery system with a porous solid desiccant

Li, Meng 18 January 2008
In this thesis, heat and moisture transfer between supply and exhaust air streams are investigated for a run-around system in which the coupling material is a desiccant coated solid that is transported between two exchangers. The finite difference method is used to solve the governing partial differential equations of the cross-flow heat exchangers in the supply and exhaust ducts. The outlet air properties are calculated for several inlet air operating conditions and desiccant properties. The accuracy of the heat transfer model is verified by comparing the simulations with well-known theoretical solutions for a single cross flow heat exchanger and a liquid coupled run-around system. The difference between the analytical predictions and the numerical model for sensible effectiveness for each exchanger and the run-around system were found to be less than 1% over a range of operating conditions. The model is also verified by modifying the boundary conditions to represent a counter flow energy wheel and comparing the calculated sensible, latent, and total effectiveness values with correlations in the literature. <p>Using the verified model for energy exchangers and the run-around energy recovery system, the sensible, latent and overall effectiveness are investigated in each exchanger and the run-around system during simultaneous heat and moisture transfer. The overall effectiveness of the run-around energy recovery system is dependent on the air flow rate, the solid desiccant flow rate, the desiccant properties, specific surface area, the size of each exchanger, and the inlet air operating conditions. The run-around system can achieve a high overall effectiveness when the flow rates and exchangers properties are properly chosen. Comparisons between the solid desiccant and salt solution run-around system effectiveness (Fan, 2005 and Fan et al, 2006) shows they are in good agreement. In a sensitivity study, the thickness of desiccant on the fibre is investigated in the solid run-around system. It was found that good performance is obtained with very thin desiccant coatings (1 or 2 micron). During the practical use of this system, a desiccant coated fibre could be inserted into very porous balls or cages that protect the desiccant coated fiber from mechanical wear. The performance sensitivity for this kind of run-around system is demonstrated.
509

Evaluation of capacitance moisture sensors for use in municipal solid waste

Schmidt, Patrick 03 March 2010
Current municipal solid waste (MSW) practices have encouraged rapid waste degradation (stabilization) as an alternative to past methods of isolating the waste from the surrounding environment. There are challenges to rapid-stabilization technology, in particular, the management of the in-situ MSW moisture content.<p> The primary objective of this study was to evaluate the use of capacitance moisture probes for the purpose of measuring the moisture content within MSW. Capacitance moisture probes have not previously been used in MSW, however their use in agriculture is extensive and knowledge of their potential for monitoring MSW is limited.<p> The specific objectives of this research were to: i) establish a laboratory based correlation between sensor data and volumetric moisture content in MSW, ii) establish a correlation between field-installed capacitance sensors and moisture content derived from continuous-depth in-situ sampling of MSW, and iii) demonstrate the ability of capturing advancing/receding moisture fronts with the field-installed capacitance sensors.<p> Laboratory trials were conducted using hand-compacted MSW at volumetric moisture contents ranging from 15%-55% and a manual type of capacitance sensor. This series of laboratory trials successfully produced a correlation between sensor output and volumetric moisture content.<p> To evaluate the sensors in a real-world application, two configurations of capacitance moisture probes were installed in the field: i) an in-place, continuous-time capacitance probe, and ii) a portable, continuous-depth at discrete time, capacitance probe.<p> Field results indicated that capacitance moisture probes were able to capture the passing of both an artificially and naturally induced moisture front, though quantitative correlation between the in-situ moisture content of the sampled MSW and the readings of the sensors could not be achieved.<p> The reasons for this were a combination of three factors:<p> 1. The introduction of void-space during sensor installation significantly reduced sensor output;<p> 2. Poor MSW sampling technique resulted in 57% recovery (causing the exact origin of samples to be unknown); and<p> 3. The sampling technique disturbed the MSW samples, resulting in incorrect volumetric moisture contents in the samples.
510

Measurement and numerical simulation of moisture transport by capillarity, gravity and diffusion in porous potash beds

Chen, Ru Gang 20 April 2004
As a hygroscopic salt, granular potash can easily absorb large quantities of water vapor from humid air during storage and transportation processes. Subsequent drying will result in potash particles sticking together to form clumps or cakes. In order to avoid or decrease caking, it is essential to know the local history of moisture content and moisture movement in a bed of potash. In this thesis, experimental measurements and numerical simulations are used to investigate moisture transport and redistribution by capillarity, gravity and diffusion effects within a potash bed. <p> The important properties required to model moisture transfer in granular porous potash (i.e. porosity, permeability, specific surface area and irreducible saturation) are investigated experimentally and theoretically. It is shown that for a mixture with a wide range of particle sizes the potash bed properties can be predicted knowing the properties for each narrow range of particle size in the mixture. <p> An experimental test facility was designed and constructed to test moisture transfer within a potash bed. The test procedures are presented along with an uncertainty analysis. The moisture content spatial distribution for different particle sizes under different initial conditions is investigated and data are presented. <p>A one-dimensional transient numerical model of moisture transport accounting for diffusion, capillarity and gravity effects within potash beds is developed. Two different moisture transport mechanisms are presented. In a wet region, where local moisture saturation level, S, is larger than an irreducible saturation, S0, liquid water exists as continuous liquid film on the particles; moisture is transferred by liquid film movement due to capillarity and gravity effects. In a dry region where S is less than S0, water vapor diffusion is the only mechanism of moisture transfer and water is adsorbed in layers on the surfaces. <p> From the experimental data and numerical simulation analysis, it is shown that the irreducible saturation, S0, is a strong function of particle size. It will decrease with a particle size increase. <p> The numerical model is validated by comparison with some typical experimental case studies. Agreement between the experimental data and simulation results is well within the experimental 95% uncertainty bounds. It is concluded from this research that the complex moisture transport process by diffusion, capillarity and gravity effects within a potash bed can be modeled and simulated. Experimental and simulation results indicate that direct water drainage will more readily occur for large particle sizes than for small particles for the same initial moisture content.

Page generated in 0.0171 seconds