• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 739
  • 228
  • 217
  • 96
  • 62
  • 49
  • 35
  • 35
  • 35
  • 35
  • 35
  • 34
  • 19
  • 12
  • 9
  • Tagged with
  • 1816
  • 918
  • 230
  • 213
  • 212
  • 172
  • 167
  • 122
  • 102
  • 93
  • 92
  • 87
  • 86
  • 84
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

A critical assessment of moist tamping and its effect on the initial and evolving structure of dilatant triaxial specimens

Park, Jin Young 12 1900 (has links)
No description available.
562

An Improved Approach For Soil Moisture Estimation By Employing Illumination-Corrected Data In A Modifed Ts-VI Method

Ahmed, Amer A. 14 September 2011 (has links)
There are a great number of publications that apply different methods to estimate soil moisture from optical satellite imagery. However, none of the proposed methods have considered correcting solar illumination error that is caused by variation in topography before estimating soil moisture. In this research, an integrated approach is developed to improve the estimation of soil moisture. The integration is represented by removing the solar-illumination error from the data. Several modifications were made in the Ts-VI space based on the Universal Triangle Relationship. The data used in the research are obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. The research results show that the surface-illumination error, which is caused by variation in topography, misleads the estimation of soil moisture index. Based on statistical and visual analysis, the results are improved with removing error. The method is further enhanced with the application of enhanced vegetation index (EVI) to the Ts-VI relationship.
563

Soil moisture redistribution modeling with artificial neural networks

Davary, Kamran. January 2001 (has links)
This study sought to investigate the application of artificial neural networks (ANN) and fuzzy inference systems (FIS) to variably saturated soil moisture (VSSM) redistribution modelling. An enhanced approach to such modelling, that lessens computation costs, facilitates input preparation, handles data uncertainty, and realistically simulates soil moisture redistribution, was our main objective. / An initial review of existing soil hydrology models provided greater insight into current modelling challenges and a general classification of the models. The application of AI techniques as alternative tools for soil hydrology modelling was explored. / A one-dimensional (1D) model based on ANN and FIS was developed. To estimate fluxes more accurately, multiple ANNs were trained and combined by way of an FIS. The main body of the model employed the ANN-FIS module to model soil moisture redistribution throughout the profile. When tested against the SWAP93 model, the ANN-FIS model gave a good match and maximum error of <8%; however, it did not show a notable computation cost shift. / The investigation proceeded with development of another ANN-based 1D modelling approach. This time, the soil profile or flow region, regardless of its depth, was divided into ten equal parts (compartments). The ANN was trained to estimate moisture patterns for a whole soil profile, from the previous day's soil moisture pattern and boundary conditions, and the current day's boundary conditions. The model was tested against SWAP93 where an average SCORE of 90.4 indicated a good match. The computation cost of the ANN-based model was about one-third that of SWAP93. / At this point the study sought to develop a 3D modelling approach. The ANN was trained to estimate the nodal soil moisture changes through time under the influence of six neighbouring nodes (in a 3D space, two on each axis). The model's accuracy was tested against the SWMS-3D model. An average SCORE of 91 and a 15-fold decrease in computation costs showed a quite acceptable performance. Results suggest that this approach is potentially capable of realistically modelling 3D VSSM redistribution with less computation time. / Finally, pros and cons of these ANN-based modelling approaches are compared and contrasted, and some recommendations on future work are given.
564

The influence of composition and microlithology on the weathering susceptibility of Ordovician mudrock in the Montréal, Québec area /

Kim, Chun-soo. January 1984 (has links)
Continuing activity in the Upper Ordovician mudrocks of the Montreal area for manufacturing purposes and construction encouraged this study of their weathering behavior in relation to composition and microstructure. / The mudrocks are grouped into four primary lithological divisions based on clay contents. Illite, chlorite and small amounts of mixed-layer clay minerals are present in similar proportions throughout all microlithologies. The distribution of calcium and magnesium in X-ray scanning images indicates that carbonates are present as silt grains rather than as cement. The specific surface of the mudrocks ranges from 2 to 20 m('2)/g for nitrogen and from 15 to 40 m('2)/g for water vapor. / The higher degree of susceptibility to moisture of the more clay-rich facies is attributed to their greater parallelism of microstructure, the presence of mesopores (2-50 nm) and less compacted packing. Changes in apparent cohesion at the menisci of capillary held water in the irregular network of passages appear to occur as cycles of adsorption and desorption proceed, resulting in the opening and closing of cracks and intermittent crack development.
565

Physical changes in the soil environment due to vehicle traffic.

Havard, Peter L. January 1978 (has links)
No description available.
566

An evaluation of plant litter accumulation and its benefits in Manitoba pastures

Neufeld, Simon James Regehr 12 September 2008 (has links)
Three studies were undertaken from 2006 to 2007 to examine litter (dead plant material) in southwestern Manitoba pastures. First, the relationship between litter and soil microclimate was tested across five pasture sites. The amount of litter biomass was not strongly related to soil moisture, though near-surface soil temperatures were reduced when litter was present. Second, the effect of four simulated grazing strategies on the litter layer was measured in six pastures. It was found that after three years of simulated grazing, litter was present in largest quantities in the least-frequently grazed treatments. Finally, a field survey was conducted assessing the quantity of litter present in native pastures across Manitoba. Litter was quite variable and averaged 1902 kg/ha over two years. This research confirmed the value of litter as an indicator of sustainable pasture management, though it remains unclear whether litter is important to pastures from the perspective of soil microclimate.
567

INFLUENCE OF MOISTURE REGIME AND TREE SPECIES ON NITROGEN CYCLING AND DECOMPOSITION DYNAMICS IN DECIDUOUS FORESTS OF MAMMOTH CAVE NATIONAL PARK, KENTUCKY, USA

Fabio, Eric 01 January 2006 (has links)
The study of biogeochemical cycles and their role in ecosystem function has helped to highlight the impacts of human activities on natural processes. However, our understanding of the effects of nitrogen (N) deposition on forested ecosystems remains limited due to the variable controls on N cycling. Soils, microclimate, and vegetation can influence rates and processes of N cycling, singly or in concert at multiple scales. Understanding how these factors influence N cycling across the landscape will help to elucidate the impacts of N deposition. The objectives of this study were to characterize variation in soils, microclimate and vegetation characteristics, and N cycling and decomposition dynamics across the landscape in a region impacted by N deposition. Relationships among these factors were explored to determine the main factors influencing N cycling and decomposition. Strong differences in net N mineralization and nitrification were found between forest stands with contrasting species composition and moisture availability. Nitrate production and leaching were related to sugar maple abundance, and base cation leaching was correlated with nitrate concentrations in soil solutions. Decomposition experiments were installed to examine the effects of substrate quality, microclimate and N availability on decay rates. Nitrogen amendments for the most part did not affect decomposition rates of wood and cellulose, and mass loss rates were correlated with microclimate and forest floor characteristics. In contrast, microclimate did not seem to affect leaf litter decay rates, and the results suggest that the presence of invertebrates may influence mass loss to a greater degree than moisture or litter quality. This work highlights the large degree of variability in N processing across the landscape and suggests that differences in microclimate and species composition may help to predict the impacts of chronic N deposition on N cycling and retention.
568

Fuktutredning av massivträkonstruktion : Analys av vägg utan ångspärr / Moisture analysis of solid wood construction : Analysis of a wall without vapour barrier

Olsson Thor, Johan, Eriksson, Robert January 2014 (has links)
Rapporten ingår i ett FoU- projekt för Högskolan Dalarna, där målet är att ta fram en konstruktion utan ångspärr som ska klara dagens mått på lufttäthet och fuktkrav. Syftet med denna rapport är att utreda hur fukt påverkar en byggnad medmassivträstomme och olika isoleringsmaterial utan ångspärr. Mineralull och träfiberisolering jämförs mot varandra för att se hur dessa påverkarfuktbelastningen i en väggkonstruktion. Testobjektet är lokaliserat i Dalarna, inget fukttillskott har funnits inomhus i byggnaden. För att genomföra detta arbete har tre stycken olika metoder används. Ensimulering, verkliga uppmätta värden och en provtagning. Fuktsimuleringen genomfördes med hjälp av programmet WUFI, uppmätta värden i form av relativ fuktighet och temperatur har samlats in kontinuerligt under två års tid från väggkonstruktionen via mätsensorer. Provtagningen utfördes med ett fysiskt ingrepp på samma nivå i konstruktionen som mätsensorer var placerade. Resultat presenteras i form av diagram och tabeller där det går att avläsa konstruktionens nulägesstatus i form av relativ fuktighet, temperatur, fuktkvot och mikrobiologisk påväxt. Isoleringsmaterialen påvisar en hög relativ fuktighet under vinterhalvåret längst ut i konstruktionen mot utomhusklimatet. Utomhusklimatet har visats spela stor roll i detta. Ingen direkt mikrobiologisk påväxt har påträffats trots en hög halt av fukt. Resultaten visar att träfiberisoleringen har bättre förmåga att hantera fukt i jämförelse med mineralullen. En vidarestudie med fuktbelastning och 21 °C inomhus bör utföras. Men för att denna studie ska fungera rekommenderas en tvåstegstätad fasadlösning för att klara fuktbelastningen i väggkonstruktionen. / The report is part of a research and development project for Dalarna University,where the goal is to produce a design without a vapour barrier that will meettoday's measure of airtightness and moisture requirements. The purpose of this report is to investigate how moisture affects a building withsolid wood and various insulation materials without vapour barrier. Mineral woolinsulation and wood fiber insulation will be compared against each other to seehow they affect the moisture load in a wall. The test object is located in Dalarna,no additional moisture load affect the indoor environment. To carry out this work, three different methods are used. A moisture simulationwas performed using the program WUFI, measured values in terms of relativehumidity and temperature were collected over two years from the wall of thebuilding. A sampling was performed with a physical operation on the same levelin the wall where measurement sensors were placed. Results are presented in form of graphs and tables where you can read thecurrent state of the construction in terms of relative humidity, temperature,moisture content and microbiological fouling. Insulation materials demonstrate ahigh relative humidity at outer layers of the construction during the wintermonths. The external environment has been shown to play a major part for theresults. No direct microbiological fouling has been detected despite a highcontent of moisture. The result of wood fiber insulation demonstrates a better ability to handlemoisture. A further study with a moisture load and 21 degrees indoors should beperformed. But for this study to work it’s recommended to change the currentfacade solution to a two- step sealed facade solution to manage the moistureload in the wall.
569

Assessment of the second generation prairie agrometeorological model's performance for spring wheat on the Canadian Prairies

Gervais, Mark D. 14 January 2009 (has links)
To assess the accuracy of the second-generation Prairie Agrometeorological Model (PAM2nd) as an agrometeorological model for spring wheat on the Canadian Prairies, a study was conducted to validate the model using field measurements. Results from model validation indicated soil moisture was being overestimated at most sites during the second half of the growing season, while soil moisture was underestimated during periods that experienced consecutive days of rainfall. Modifications to the model were implemented to improve the model's ability to simulate soil moisture. Evapotranspiration estimates from PAM2nd and the FAO56 Penmen-Monteith method were compared to water balance methods. Both models produced estimates that fell within the range of water balance ET measurement error. The similarity in performance of both models to estimate ET compared to the water balance ET means the adoption of either model could be justified. However, PAM2nd would be more appropriate because it requires fewer, more commonly measured, surface weather parameters.
570

Estimation of hydrological properties of South African soils.

Hutson, John Leslie. January 1983 (has links)
A computer simulation model of the soil water regime can be a useful research, planning and management tool, providing that the data required by the model are available. Finite difference solutions of the general flow equation can be applied to complex field situations if soil profile characteristics are reflected by appropriate retentivity (B( Ψ)) and hydraulic conductivity (K(Ψ)) functions. The validity of a flow simulation model depends upon the degree to which simulated flow corresponds to the flow pattern in real soils. Macroscopic flow in apedal soils is likely to obey Darcy's law but in structured or swe~ling soils, macro-pores and shrinkage voids lead to non-Darcian flow. Physical composition and structural stability properties of a wide range of South African soils were used to assess swelling behaviour and depth-related textural changes. The applicability of a one-dimensional Darcian flow model to various soil types was evaluated. Core retentivity data for South African soils were used to derive regression equations for predicting B (Ψ) from textural criteria and bulk density. A sigmoidal, non-hysteretic two-part retentivity function having only two constants in addition to porosity was developed for use in water flow simulation models. Values of the constants, shapes of the retentivity curves and soil textural properties were related by fitting the retentivity function to retentivity data generated using regression equations~ Hydraulically inhomogeneous soils may be modelled by varying the values of the retentivity constants through the profile to reflect changing soil properties. Equations for calculating K(B) or K(Ψ) from retentivity data were derived by applying each of three capillary models to both exponential and two-part retentivity functions. Comparison of these equations showed that the definition and value of semi-empirical constants in the capillary models were as important as the choice of model in determining K(B). K(Ψ) was calculated using retentivity constants corresponding to a range of bulk density, clay and silt content combinations. Three retentivity constant-soil property systems were evaluated. These were derived from retentivity data for South African soils between 1) -10 and -1500 kPa, 2) 0 and -50 kPa and 3) from published retentivity data for British soils. Only that derived from retentivity data accurate in the 0 to -50 kPa range led to K(Ψ) relationships in which saturated K and the slope sK/sΨ decreased as bulk density, clay or silt content increased. Absolute values of K were unreliable and measured values are essential for matching purposes. A method for evaluating the constants in a K(Ψ) or K(B) function from the rate of outflow or inflow of water after a step change in potential at the base of a soil core was described. Simple exponential g (Ψ) and K(Ψ) functions were assumed to apply to each pressure potential range. Retentivity parameters were obtained by fitting the 8(Ψ) function to the measured retentivity curve. A value for K[s] , the remaining unknown parameter in the K(Ψ) function, was obtained by matching measured outflow and inflow data to a family of simulated curves. These were computed using measured retentivity parameters, core dimensions and ceramic plate conductivity, and a range of K[s] values. An advantage of this method is that there are no limitations on core length, plate impedance or pressure potential range which cannot be ascertained by prior simulation. Regression equations relating texture to retentivity, and a conductivity model were applied in a simulation study of the water regime in a weighing lysimeter in which gains and losses of water were measured accurately. Active root distribution was assumed proportional to root mass distribution. Relative K(Ψ) curves for each node were computed using one of the conductivity equations derived earlier. Daily water potentials for a month were simulated using three conductivity matching factors. By matching simulated Ψ values to tensiometer potentials measured at five depths an appropriate matching factor was chosen. The effects of an over- or underestimate of K(Ψ) were demonstrated. This work simplifies the prediction and use of retentivity and conductivity relationships in soil water flow simulation models. These models can be used for assessing the water regime in both irrigated and dry-land crop production. Other applications include catchment modelling, effluent disposal and nutrient and solute transport in soil. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1983.

Page generated in 0.0301 seconds