• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 27
  • 18
  • 7
  • 6
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 162
  • 162
  • 32
  • 31
  • 30
  • 29
  • 24
  • 20
  • 19
  • 17
  • 16
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Development of solid phase-based PET isotope labelling methods

Jameson, Elizabeth Frances Mary January 2016 (has links)
Positron Emission Tomography (PET) has great value in research and clinical applications from oncology to neurodegenerative disorders. However, there is a barrier in translating biological knowledge into new PET applications due in part to the lack of efficient, widely applicable methods for labelling compounds with PET radioisotopes. Herein, a generic approach to radiolabelling is presented which is direct, broadly applicable and potentially adaptable to either of the two most commonly used PET radioisotopes, 11C and 18F. This approach employs the advantages of solid phase synthesis to achieve selective release of only the desired radiolabelled product from a solid support in a single step, simplifying purification and hence improving synthetic efficiency. Polystyrene resin was functionalised with a 1,2-diol group; this allowed the covalent attachment of compounds bearing boronic acid groups via formation of a boronate ester linkage. A Suzuki-Miyaura reaction with methyl iodide was used to cleave a model compound from the resin in 61% conversion after five minutes. This reaction was adapted to develop a fully automated radiosynthesis with [11C]- methyl iodide which generated a radiolabelled model compound in 2 – 7% non-decay-corrected radiochemical yield. This provided proof of concept for the simultaneous cleavage of compounds from the resin and radiolabelling with 11C. A boronic acid precursor of the known radiotracer [11C]-M-MTEB was attached to the resin and successfully radiolabelled with 11C in 2.4% non-decay-corrected radiochemical yield and 96 – 100% radiochemical purity under the same conditions. Furthermore, the potential adaptability of this solid phase approach to 18F radiolabelling was demonstrated by treatment of the resin-bound small molecules and peptides with potassium bifluoride, which released the compounds rapidly as trifluoroborate salts.
52

89Zr-Imuno-PET/111In-Imuno- SPECT: desenvolvimento radiofarmacêutico de agentes de imagem molecular para receptores EGF / 89Zr immuno-PET/111In imuno-SPECT: Radiopharmaceutical development of molecular imaging agents for EGF receptors

Benedetto, Raquel 08 December 2017 (has links)
A baixa seletividade dos métodos convencionais para diagnóstico e terapia de neoplasias, bem como o fato de nem sempre alcançarem o sucesso terapêutico desejado, configuram dificuldades para a prática oncológica. Diante disso, os anticorpos monoclonais (AcMs) radiomarcados, aplicados em técnicas diagnósticas, têm se destacado, visto que permitem a entrega seletiva da radiação ao alvo de interesse. A metodologia Radioimunodiagnóstico (RID), utilizando AcM anti-EGFR radiomarcado, possibilita triagem prévia, avaliando a resistência ao tratamento e estratificando pacientes que possam apresentar benefícios à imunoterapia com cetuximabe. Além disso, permite monitorar a progressão da terapia, visando tratamento mais efetivo e direcionado, promulgando a abordagem da medicina personalizada. No Brasil, ainda não há radioimunoconjugado disponível para diagnóstico e seguimento do câncer. Nesse contexto, o objetivo com este trabalho foi o de desenvolver uma formulação farmacêutica para padronizar uma rotina de produção dos radiofármacos para radioimunodiagnóstico de câncer de cabeça e pescoço e de câncer colorretal: cetuximabe-DTPA-111In e cetuximabe-DFO-89Zr. Em adição, corroborar na elucidação dos mecanismos de resistência das células tumorais à terapia com o cetuximabe, através da realização de estudos de ligação do radioimunoconjugado à receptores celulares. Em relação aos radiofármacos estudados, destaca-se que os processos de conjugação do cetuximabe com os quelantes DTPA, na razão molar 1:20, e com o DFO, 1:5, foram bem-sucedidos e otimizados, demonstrando boa reprodutibilidade. Os imunoconjugados apresentaram preservação da imunorreatividade e alta estabilidade quando armazenados a -20°C por até seis meses. Esses imunoconjugados, quando radiomarcado com 111In e 89Zr, exibiram pureza radioquímica superior a 95%, sem necessidade de purificação pós-marcação, e estabilidade por tempo que possibilita seu transporte às clínicas distantes do centro produtor. As análises in vitro do cetuximabe-DTPA-111In em células FaDu-C10 (linhagem resistente) demonstraram percentual inexpressivo de ligação e internalização do radioimunoconjugado, congruindo na explanação do modelo de resistência conferido à linhagem. O estudo de corpo inteiro em MicroPET/TC revelou redução no perfil de captação no grupo de bloqueio, com excesso de cetuximabe não marcado, e intensa captação do cetuximabe-DFO-89Zr pelo tumor de células escamosas no grupo sem bloqueador, confirmando a especificidade in vivo do radioimunoconjugado. Os estudos de biodistribuição dos radiofármacos foram compatíveis com os descritos em literatura e validaram os resultados obtidos por imagens em MicroSPECT/TC e MicroPET/TC, além de apresentarem apreciável captação tumoral, considerando os tempos analisados. A estabilidade alta in vivo e a eficácia da marcação foram confirmadas pela baixa captação óssea e em tecidos não alvos. O melhor intervalo pós-injeção do radiofármaco para avaliação in vivo foi após cinco dias da administração. Conclui-se, portanto, que os radioimunoconjugados para imuno-SPECT e imuno-PET, cetuximabe-DTPA-111In e cetuximabe-DFO-89Zr, são ferramentas promissoras para diagnóstico e monitoramento de câncer receptor específico (EGFR) e para estratificação de pacientes à terapia anti-EGFR, encorajando a continuidade deste projeto para futuros estudos clínicos. / The low selectivity of conventional methods for cancer diagnosis and therapy, as well as the fact that these methods could not achieve the desired therapeutic success, constitute difficulties for the oncological practice. In this regard, radiolabeled monoclonal antibodies (mAbs) applied in diagnostic techniques have been highlighted, since they allow the selective delivery of the radiation to the specific target. The radioimmunodiagnosis methodology (RID), using radiolabeled anti-EGFR mAbs, enables previous screening, evaluating resistance to treatment and stratifying patients who may present benefits to cetuximab immunotherapy. In addition, it allows monitoring the progression of the therapy, aiming for a more effective and directed treatment, leading the personalized medicine approach. A radioimmunoconjugate is not yet available for diagnosis and management of cancer in Brazil. In this context, this research was carried out to develop a pharmaceutical formulation to standardize a routine production of radiopharmaceuticals for diagnosis and monitoring head and neck cancer and colorectal carcinoma: 111In-DTPA-cetuximab and 89Zr-DFO-cetuximab. In addition, corroborate in the elucidation of the tumor cells resistance mechanisms to EGFR-targeted therapy, through in vitro and in vivo radioimmunoconjugate binding studies to cellular receptors. Regarding to the radiopharmaceuticals studied, cetuximab was conjugated to DTPA chelator at 1:20 molar ratio and to DFO at 1: 5, and these processes were successful and optimized, showing good reproducibility. Immunoconjugates showed preservation of immunoreactivity and high stability when stored at -20 °C for up to 6 months. These immunoconjugates when radiolabeled with 111In and 89Zr have exhibited radiochemical purity above 95%, without any post-labeling purification, and the radioimmunoconjugates have demonstrated stability for a time that allows them to be transported to clinics far from the producer center. 111In-DTPA-cetuximab in vitro analyzes in FaDu-C10 cells (resistant cell line) has presented an inexpressive percentage of binding and internalization of the radioimmunoconjugate, ensuring the resistance model conferred to this cell line. The MicroPET/CT imaging study has revealed a reduction in uptake profile for \"Blocking\" group, with an excess of unlabeling cetuximab, and an intense 89Zr-DFO-cetuximab uptake in squamous cell tumor for \"Non-blocking\" group, that evidenced the in vivo radioimmunoconjugate specificity. The biodistribution studies of the radiopharmaceuticals were well-matched with those described in the literature and they validated the results obtained through the MicroSPECT/CT and MicroPET/ CT images. In addition, these studies in vivo have displayed a substantial tumor uptake, according with the analyzed time points. The radioimmunoconjugate showed high in vivo stability and labeling procedures efficiency, which were confirmed by low bone and non-target tissues uptake. The best post-injection interval for in vivo evaluation is after 5 days of radioimmunoconjugate administration. In conclusion, the radioimmunoconjugates for immuno-SPECT and immuno-PET, 111In-DTPA-cetuximab and 89Zr-DFO-cetuximab, are promising tools for diagnosis and monitoring of specific receptor cancer (EGFR), as well as for stratification of patients to anti-EGFR therapy, and thus encourages the continuity of this project for future clinical trials.
53

Functions of the Cholinergic System in the Morbidities Associated with Alzheimer’s Disease and the Further Evaluation of Tools for the Molecular Imaging of this System

Quinlivan, Mitchell Owen Jeffrey January 2007 (has links)
Doctor of Philosophy(PhD) / The aims of this project were to contribute to the elucidation of the role of the cholinergic system in attention and memory, two cognitive processes severely compromised in Alzheimer’s disease (AD), and to evaluate and develop tools for the functional molecular imaging of this system with a view to improving knowledge of AD and other neurological disorders. Towards the first aim, the specific anti-cholinergic toxin 192 IgG-saporin (SAP) was administered to female Sprague-Dawley rats via either an intracerebroventricular (icv) or an intracortical route and animals were tested with a vibrissal-stimulation reaction-time task and an object recognition task to evaluate their attentional and mnemonic function, respectively. The second aim was approached in two ways. Firstly, relative neuronal densities from animals with icv lesions were assessed with both ex vivo and in vitro autoradiography with the specific cholinergic radiopharmaceuticals [123I]iodobenzovesamicol (123IBVM) and 125I-A-85380, ligands for the vesicular acetylcholine transporter and the nicotinic acetylcholine receptor, respectively. Secondly, a number of in vivo and in vitro studies were performed on a novel and unique molecular imaging system (TOHR), with which it had been hoped initially to image eventually SAP-lesioned animals, with a view to measuring and ameliorating its performance characteristics and assessing its in-principle suitability for small-animal molecular imaging. The behavioural studies support a critical role for the cholinergic system in normal attentional function. Additionally, in accord with literature evidence, no significant impairment was observed in mnemonic function. It is postulated however that the results observed in the intracortically-lesioned animals support the published hypothesis that cholinergic projections to the perirhinal cortex are critical for object-recognition memory. In autoradiographic studies, SAP-lesioned animals demonstrated reduced uptake of 123IBVM in multiple regions. A reduction of nicotinic receptors was also seen in SAP-lesioned animals, a novel finding supportive of the excellent characteristics of radioiodinated I-A-85380. Examination of the performance characteristics of the TOHR support in principle its utility for targeted small-animal molecular imaging studies.
54

Radiolabeled HER-2 Binding Affibody Molecules for Tumor Targeting : Preclinical Studies

Steffen, Ann-Charlott January 2006 (has links)
<p>Conventional cancer treatment based on radiotherapy or chemotherapy affects all dividing cells. By directing the therapy specifically to the tumor cells, normal cells can be spared. Tumor targeting molecules carrying a cytotoxic moiety is then an attractive approach. </p><p>In this thesis, an affibody molecule with high affinity for the protein HER-2, that is strongly associated with aggressive forms of breast cancer, was selected. After radiolabeling with <sup>125</sup>I, the affibody molecule, in monovalent and bivalent form, was tested <i>in vitro</i> in HER-2 overexpressing tumor cells and in transplanted tumors in mice. </p><p>It was shown that the HER-2 targeting affibody molecule bound its target in a specific manner, both <i>in vitro</i> and <i>in vivo</i>. The small size of the affibody molecule resulted in fast clearance through the kidneys. An impressive tumor-to-blood ratio of 10 eight hours post injection was achieved and the tumors could easily be visualized in a gamma camera. </p><p>The biologic effects of the bivalent affibody molecule and a monovalent affinity maturated version was measured and compared with the effects of the monoclonal antibody trastuzumab. It was found that although all molecules target the same protein, the effects differed greatly.</p><p>The affibody molecule was also labeled with the alpha-emitting radionuclide <sup>211</sup>At. Specific decrease in survival was seen in HER-2 overexpressing cells receiving the <sup>211</sup>At labeled affibody molecule. The sensitivity to the treatment differed between cell lines, probably as a result of differences between the cell lines in internalization and nuclear size. The <sup>211</sup>At labeled affibody molecules were also tested <i>in vivo</i>, where stability of the <sup>211</sup>At label was a problem. To circumvent this problem, more stable conjugation chemistry was tested, as well as strategies to prevent uptake of released <sup>211</sup>At by normal organs.</p><p>This thesis describes the selection and optimization of affibody molecules for medical use for the first time.</p>
55

Radiolabeled HER-2 Binding Affibody Molecules for Tumor Targeting : Preclinical Studies

Steffen, Ann-Charlott January 2006 (has links)
Conventional cancer treatment based on radiotherapy or chemotherapy affects all dividing cells. By directing the therapy specifically to the tumor cells, normal cells can be spared. Tumor targeting molecules carrying a cytotoxic moiety is then an attractive approach. In this thesis, an affibody molecule with high affinity for the protein HER-2, that is strongly associated with aggressive forms of breast cancer, was selected. After radiolabeling with 125I, the affibody molecule, in monovalent and bivalent form, was tested in vitro in HER-2 overexpressing tumor cells and in transplanted tumors in mice. It was shown that the HER-2 targeting affibody molecule bound its target in a specific manner, both in vitro and in vivo. The small size of the affibody molecule resulted in fast clearance through the kidneys. An impressive tumor-to-blood ratio of 10 eight hours post injection was achieved and the tumors could easily be visualized in a gamma camera. The biologic effects of the bivalent affibody molecule and a monovalent affinity maturated version was measured and compared with the effects of the monoclonal antibody trastuzumab. It was found that although all molecules target the same protein, the effects differed greatly. The affibody molecule was also labeled with the alpha-emitting radionuclide 211At. Specific decrease in survival was seen in HER-2 overexpressing cells receiving the 211At labeled affibody molecule. The sensitivity to the treatment differed between cell lines, probably as a result of differences between the cell lines in internalization and nuclear size. The 211At labeled affibody molecules were also tested in vivo, where stability of the 211At label was a problem. To circumvent this problem, more stable conjugation chemistry was tested, as well as strategies to prevent uptake of released 211At by normal organs. This thesis describes the selection and optimization of affibody molecules for medical use for the first time.
56

Affibody molecules targeting the epidermal growth factor receptor for tumor imaging applications

Friedman, Mikaela January 2008 (has links)
Tumor targeting and molecular imaging of protein markers specific for or overexpressed in tumors can add useful information in deciding upon treatment and assessing the response to treatment for a cancer patient. The epidermal growth factor receptor (EGFR) is one such tumor-associated receptor, which expression is abnormal or upregulated in various cancers and associated with a poor patient prognosis. It is therefore considered a good target for imaging and therapy. Monoclonal antibodies and recently also antibody fragments have been investigated for in vivo medical applications, like therapy and imaging. In molecular imaging a small sized targeting agent is favorable to give high contrast and therefore, antibody fragments and lately also small affinity proteins based on a scaffold structure constitute promising alternatives to monoclonal antibodies. Affbody molecules are such affinity proteins that are developed by combinatorial protein engineering of the 58 amino acid residue Z-domain scaffold, derived from protein A. In this thesis, novel Affibody molecules specific for the EGFR have been selected from a combinatorial library using phage display technology. Affibody molecules with moderate high affinity demonstrated specific binding to native EGFR on the EGFR-expressing epithelial carcinoma A431 cell line. Further cellular assays showed that the EGFR-binding Affibody molecules could be labeled with radiohalogens or radiometals with preserved specific binding to EGFR-expressing cells. In vitro, the Affibody molecule demonstrated a high uptake and good retention to EGFR-expressing cells and was found to internalize. Furthermore, successful imaging of tumors in tumor-bearing mice was demonstrated. Low nanomolar or subnanomolar affinities are considered to be desired for successful molecular imaging and a directed evolution to increase the affinity was thus performed. This resulted in an approximately 30-fold improvement in affinity, yielding EGFR-binding Affibody molecules with KD´s in the 5-10 nM range, and successful targeting of A431 tumors in tumor-bearing mice. To find a suitable format and labeling, monomeric and dimeric forms of one affinity matured binder were labeled with 125I and 111In. The radiometal-labeled monomeric construct, 111In-labeled-ZEGFR:1907, was found to provide the best tumor-to-organ ratio due to good tumor localization and tumor retention. The tumor-to-blood ratio, which is often used as a measure of contrast, was 31±8 at 24 h post injection and the tumor was clearly visualized by gamma-camera imaging. Altogether, the EGFR-binding Affibody molecule is considered a promising candidate for further development of tumor imaging tracers for EGFR-expressing tumors and metastases. This could simplify the stratification of patients for treatment and the assessment of the response of treatment in patients. / QC 20100723
57

Engineering of Affibody molecules for Radionuclide Molecular Imaging and Intracellular Targeting

Hofström, Camilla January 2013 (has links)
Affibody molecules are small (7 kDa) affinity proteins of non-immunoglobulin origin that have been generated to specifically interact with a large number of clinically important molecular targets. In this thesis, Affibody molecules have been employed as tracers for radionuclide molecular imaging of HER2- and IGF-1R-expressing tumors, paper I-IV, and for surface knock-down of EGFR, paper V. In paper I, a tag with the amino acid sequence HEHEHE was fused to the N-terminus of a HER2-specific Affibody molecule, (ZHER2), and was shown to enable facile IMAC purification and efficient tri-carbonyl 99mTc-labeling. In vivo evaluation of radioactivity uptake in different organs showed an improved biodistribution, including a 10-fold lower radioactivity uptake in liver, compared to the same construct with a H6-tag. In paper II, it was further shown that an N-terminally placed HEHEHE-tag on ZHER2 provided lower unspecific uptake of radioactivity in liver compared to its H6-tagged counterpart even when radiolabeling was at the C-terminus using alternative chemistries to attach 99mTc, 111In or 125I. In paper III, the H6-tag’s composition and position was varied with regards to charge, hydrophobicity and its C- or N-terminal placement on ZHER2. Among the ten variants investigated, it was found that an N-terminal HEHEHE-tag provided the most favorable overall biodistribution profile and that introduction of hydrophobic and positively charged amino acids provoked liver uptake of radioactivity. In paper IV, the HEHEHE-tag was shown to enable IMAC purification and tri-carbonyl 99mTc-labeling of an IGF-1R-specific Affibody molecule and improved its overall biodistribution when compared to the same construct with a H6-tag. In paper V, the aim was to develop an intracellular receptor-entrapment system to reduce the surface levels of EGFR. An EGFR-specific Affibody molecule was expressed as a fusion to different mutants of an intracellular transport protein in SKOV-3 cells, resulting in a collection of cell lines with 50%, 60%, 80% and 96% reduced surface level of EGFR. Analysis of the proliferation rate of these cell lines showed that a modest reduction (15%) in proliferation occurs between 60% and 80% reduction of the surface level of EGFR. / <p>QC 20130129</p>
58

On the Design of Affibody Molecules for Radiolabeling and In Vivo Molecular Imaging

Rosik, Daniel January 2013 (has links)
Affibody molecules have lately shown great potential as tools for in vivo molecular imaging. These small, 3-helical bundles, with their highly stable protein scaffold, are well suited for the often harsh conditions of radiolabeling. Their small size allows for rapid clearance from the blood circulation which permits the collection of images already within hours after injection. This thesis includes four papers aimed at engineering different variants of a HER2-binding Affibody molecule to enable effective  and  flexible  radiolabeling  and  enhancing  the  molecular  imaging  in  terms  of  imaging contrast and resolution. In paper I an Affibody molecule was engineered to function as a multifunctional platform for site-specific labeling with different nuclides for radionuclide imaging. This was done using only natural amino  acids,  thereby  allowing  for  both  synthetic  and  recombinant  production.  By  grafting  the amino acid sequence -GSECG to the C-terminal of our model-protein, a HER2-binding Affibody molecule, we enabled site specific labeling with both trivalent radiometals and with  99m Tc. Maleim-ide-DOTA was conjugated to the cysteine residue for labeling with  111 In, while the peptide sequence was able to chelate  99m Tc directly. This approach can also be used for site-specific labeling with other probes available for thiol-chemistry, and is applicable also to other protein scaffolds. In paper II we investigated the impact of size and affinity of radiolabeled Affibody molecules on tumor targeting and image contrast. Two HER2-targeting Affibody molecules, a two-helix (~5 kDa) and a three-helix (~7 kDa) counterpart, were synthetically produced, labeled with  111 In via chelation by  DOTA  and  directly  compared  in  terms  of  biodistribution  and  targeting  properties.  Results showed  that  the  smaller  variant  can  provide  higher  contrast  images,  at  the  cost  of  lower  tumor uptake,  in  high-expressing  HER2-tumors.  However,  neither  the  tumor  uptake  nor  the  contrast of the two-helix variant is sufficient to compete with the three-helix molecule in tumors with low expression of HER2. In paper III and IV we were aiming to find methods to improve the labeling of Affibody molecules with  18 F for PET imaging. Current methods are either complex, time-consuming or generate heavily lipophilic conjugates. This results in low yields of radiolabeled tracer, low specific activity left for imaging, undesirable biodistribution or a combination thereof. In paper III we demonstrate a swift and efficient 2-step, 1-pot method for labeling HER2-binding Affibody molecules by the formation of aluminum  18 F-fluoride (Al 18 F) and its chelation by NOTA, all in 30 min. The results show that the  18 F-NOTA-approach is a very promising method of labeling Affibody molecules with  18 F and further investigation of this scheme is highly motivated. In the last paper we pursued the possibility of decreasing the high kidney retention that is common among small radiotracers with residual-izing radiometabolites. In this work  18 F-4-fluorobenzaldehyde (FBA) was conjugated to a synthetic HER2-targeting Affibody molecule via oxime ligation. However, to avoid elevated liver retention, as seen in previous studies with this kind of label, a hydrophilic triglutamyl spacer between the aminooxy moiety and the N-terminal was introduced. A comparison of the two constructs (with and without the triglutamyl spacer) showed a clear reduction of retention in both kidney and liver in NMRI mice at 2 h p.i. when the spacer was included. In the light of these promising results, further studies including tumor-bearing mice, are in preparation. / <p>QC 20130203</p>
59

Automated Detection and Differential Diagnosis of Non-small Cell Lung Carcinoma Cell Types Using Label-free Molecular Vibrational Imaging

Hammoudi, Ahmad 05 September 2012 (has links)
Lung carcinoma is the most prevalent type of cancer in the world, considered to be a relentlessly progressive disease, with dismal mortality rates to patients. Recent advances in targeted therapy hold the premise for the delivery of better, more effective treatments to lung cancer patients, that could significantly enhance their survival rates. Optimizing care delivery through targeted therapies requires the ability to effectively identify and diagnose lung cancer along with identifying the lung cancer cell type specific to each patient, \textit{small cell carcinoma}, \textit{adenocarcinoma}, or \textit{squamous cell carcinoma}. Label free optical imaging techniques such as the \textit{Coherent anti-stokes Raman Scattering microscopy} have the potential to provide physicians with minimally invasive access to lung tumor sites, and thus allow for better cancer diagnosis and sub-typing. To maximize the benefits of such novel imaging techniques in enhancing cancer treatment, the development of new data analysis methods that can rapidly and accurately analyze the new types of data provided through them is essential. Recent studies have gone a long way to achieving those goals but still face some significant bottlenecks hindering the ability to fully exploit the diagnostic potential of CARS images, namely, the streamlining of the diagnosis process was hindered by the lack of ability to automatically detect cancer cells, and the inability to reliably classify them into their respective cell types. More specifically, data analysis methods have thus far been incapable of correctly identifying and differentiating the different non-small cel lung carcinoma cell types, a stringent requirement for optimal therapy delivery. In this study we have addressed the two bottlenecks named above, through designing an image processing framework that is capable of, automatically and accuratly, detecting cancer cells in two and three dimensional CARS images. Moreover, we built upon this capability with a new approach at analyzing the segmented data, that provided significant information about the cancerous tissue and ultimately allowed for the automatic differential classification of non-small cell lung carcinoma cell types, with superb accuracies.
60

Development of Dynamic DNA Probes for High-Content in situ Proteomic Analyses

Schweller, Ryan 06 September 2012 (has links)
Dynamic DNA complexes are able to undergo multiple hybridization and dissociation events through a process called strand displacement. This unique property has facilitated the creation of programmable molecular detection systems and chemical logic gates encoded by nucleotide sequence. This work examines whether the ability to selective exchange oligonucleotides among different thermodynamically-stable DNA complexes can be harnessed to create a new class of imaging probes that permit fluorescent reporters to be sequentially activated (“turned on”) and erased (“turned off”). Here, dynamic DNA complexes detect a specific DNA-conjugated antibody and undergo strand displacement to liberate a quencher strand and activate a fluorescent reporter. Subsequently, incubation with an erasing complex allows the fluorophore to be stripped from the target strand, quenched, and washed away. This simple capability therefore allows the same fluorescent dyes to be used multiple times to detect different markers within the same sample via sequential rounds of fluorescence imaging. We evaluated and optimized several DNA complex designs to function efficiently for in situ molecular analyses. We also applied our DNA probes to immunofluorescence imaging using DNA-conjugated antibodies and demonstrated the ability to at least double the number of detectable markers on a single sample. Finally, the probe complexes were reconfigured to act as AND-gates for the detection of co-localized proteins. Given the ability to visualize large numbers of cellular markers using dynamic DNA probe complexes, high-content proteomic analyses can be performed on a single sample, enhancing the power of fluorescence imaging techniques. Furthermore, dynamic DNA complexes offer new avenues to incorporate DNA-based computations and logic for in situ molecular imaging and analyses.

Page generated in 0.0448 seconds