• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 27
  • 18
  • 17
  • 8
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 267
  • 167
  • 113
  • 99
  • 67
  • 43
  • 31
  • 29
  • 23
  • 23
  • 21
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Gray-box modeling and model-based control of Czochralski process producing 300 mm diameter Silicon ingots / 直径300mmのシリコンインゴットを製造するチョクラルスキープロセスのグレーボックスモデリング及びグレーボックスモデルに基づく予測制御

Kato, Shota 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24040号 / 情博第796号 / 新制||情||135(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 加納 学, 教授 大塚 敏之, 教授 下平 英寿 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DGAM
202

Splitting a Platoon Using Model Predictive Control

Gustafsson, Albin, Vardar, Emil January 2021 (has links)
When multiple autonomous vehicles drive closelytogether behind each other, it is called a platoon. Platooningprovides several benefits, such as decreased congestion andreduced fuel consumption. In order for more vehicles to takeadvantage of these benefits, the platoon should be able to openup a space for other vehicles to merge into. Thus, our goal withthe project was to develop a system that can split a platoon.To achieve this, we are using model predictive control (MPC) tocontrol the system because it can handle constraints and controlsystems with multiple variables. To test the implemented system,we created a simulation environment in Python. We createdseveral plots to analyze and show the results of the simulations.To make the simulation more realistic, we introduced air drag tothe system. To counteract this effect, we added linearized air dragto the MPC. We showed that the constructed system could splitbetween any two adjacent vehicles in a platoon up to 50 meters.Another significant result was that the MPC could compensatefor the air drag without adding linearized air drag to the MPC. / När flera autonoma fordon kör nära varandra kallas det för en platoon. Det finns flera fördelar med platooning som minskad trafik samt minskad bränsleförbrukning. För att fler fordon ska kunna dra nytta av dessa fördelar bör nya fordon kunna sammansluta till en platoon och på grund av detta bör fordonen i platoonen kunna öppna ett utrymme för det nya fordonet. Därför är vårt mål med detta projekt att utveckla ett system som kan styra och dela på en platoon. För att åstadkomma detta använder vi model prediktiv reglering (MPC) eftersom den är bra på att hanterar bivilkor och styra system med många variabler. Vi implementerade systemet i Python, där en simuleringsmiljö skapades. För att se och analysera resultaten av simuleringen skapades grafer som visade hur fordonen hade färdats under simuleringen. Vi lade till luftmotstånd i simuleringen för att göra den mer realistisk. För att motverka luftmotståndet lade vi även till ett linjäriserat luftmotstånd till i MPC:n. I slutet av projektet kunde systemet dela platoonen mellan två fordon med ett avstånd upp till 50 meter. Vi observerade att MPC:n kunde kompensera motståndet utan implementationen av det linjäriserade luftmotståndet. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
203

Model Predictive Control for Vision-Based Platooning Utilizing Road Topography

Magnusson, Sofia, Hansson, Mattias January 2021 (has links)
Platooning is when vehicles are driving close aftereach other at a set distance and it is a promising method toimprove the traffic of todays infrastructure. Several approachesfor platooning can be taken and in this paper a vision-basedimplementation has been studied. With a camera that detectsthe orientation of a marker attached to a small vehicle, it hasbeen examined how the pitch of the marker can be exploitedto perform vision-based platooning considering the road grade.A model predictive control strategy is presented to maintain aplatooning distance with the potential of utilizing road topography.The aim of the project was to use this information tominimize brake and motor forces of the platooning vehicle. Thestrategy was based on relative vehicle states, detectable by acamera. The model predictive controller was implemented onsmall robotic vehicles and tested on a flat surface. The controllerwas successful in converging towards the wanted distance andcapable of reaching a steady state speed. The results showed thatit took 15 seconds for the system to reach a steady state. / Konvojkörning är när fordon kör nära efter varandra med ett bestämt avstånd och det är en lovande metod för att förbättra trafiken i dagens infrastruktur. Åtskilliga tillvägagångssätt kan tas och i denna artikel så har ett visionsbaserat genomförande studerats. Med en kamera som upptäcker orienteringen av en markör som sitter på ett litet fordon så har det undersökts hur markörens lutningsvinkel kan utnyttjas för att utföra en visionsbaserad konvojkörning med hänsyn till vägens lutning. En model predictive control-strategi är presenterad för att bibehålla ett bestämt konvojavstånd med möjligheten att använda vägens topografi. Projektets mål var att använda denna information för att minska bromsoch motorkrafter för det konvojkörande fordonet. Strategin grundades på fordonets relativa tillstånd som var detekterbara med en kamera. En model predicitve control utfärdades på små robotfordon och testades på en platt yta. Kontrollern var framgångsrik i att konvergera mot det önskade avståndet och kapabel till att nå ett stabilt tillstånd för hastigheten. Resultaten t det tog 15 sekunder för fordonets hastighet att nå det stabila tillståndet. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
204

Design & implementation of a bespoke MRPII system for a small and medium enterprise (SME) manufacturing company

Uddin, Amad, Khan, M. Khurshid, Noor, S. January 2011 (has links)
No / Due to significant challenges and increase in competition within the global environment, manufacturing companies need to focus on Manufacturing Planning and Control (MPC) systems in order to gain a competitive edge. This research paper describes a contribution towards the design and implementation of a bespoke MRP II system for a SME company dealing in tool reclamation. The paper covers the investigation of currently available MRP II systems and also investigates the present MPC system of the concerned SME company. On the basis of these investigations, a new/bespoke design has been proposed and developed for an MRP II system that is tailor-made for the aforementioned company. The newly designed MRP II system has been developed (using MS Access and Visual Basic for Application i.e. VBA) as a database planning tool of MPC system and contains the critical modules Demand Management (DM), Rough Cut Capacity Planning (RCCP), Master Production Scheduling (MPS), Material Requirements Planning (MRP), and Capacity Requirements Planning (CRP). The bespoke MRP II system has been tested within the real manufacturing environment existing in the SME company with positive results. The key outcome of the research has shown that even small SME’s can design and implement their own MRPII system, which is particular and relevant to their own special manufacturing environment, using a minimal of time, software and financial resources.
205

ENERGY OPTIMIZATION OF HEATING, VENTILATION, AND AIR CONDITIONING SYSTEMS

Saman Taheri (18424116) 23 July 2024 (has links)
<p dir="ltr">The energy consumption in the building sector is responsible for over 36% of the total energy consumption across the globe. Of all the energy-consumer devices within a building, heating, ventilation, and air conditioning (HVAC) systems account for over 50% of the total energy consumed. This makes HVAC systems a source of preventable and unexplored energy waste that can be tackled by incorporating intelligent operations. Since its inception, model predictive control (MPC) has been one of the prospective solutions for HVAC management systems to reduce both costs and energy usage. Additionally, MPC is becoming increasingly practical as the processing capacity of building automation systems increases and a large quantity of monitored building data becomes available. MPC also provides the potential to improve the energy efficiency of HVAC systems via its capacity to consider limitations, to predict disruptions, and to factor in multiple competing goals such as interior thermal comfort and building energy consumption. In this regard, the opening chapter delves into the evolving landscape of the HVAC industry. It explores how rapid advancements in technology, growing concerns about climate change, and the ever-present need for energy efficiency are driving innovation. The chapter highlights the shift from static to dynamic HVAC systems, where buildings become sensor-rich networks enabling advanced control strategies like Model Predictive Control (MPC) and Fault Detection and Diagnosis (FDD). we first provide a comprehensive review of the literature concerning the application of MPC in HVAC systems. Detailed discussions of modeling approaches and optimization algorithms are included. Numerous design aspects such as prediction horizon, time step, and cost function, that impact MPC performance are discussed in detail. The technical characteristics, advantages, and disadvantages of various types of modeling software are discussed. Next, a thorough, real-world case study for the design and implementation of a generalized data-collection and control architecture for HVAC systems in an educational building is proposed. The proposed MPC method adds a supervisory control layer on top of the current BMS by delivering temperature setpoints to the legacy controller. This means that the technique may be used to a variety of current HVAC systems in different commercial buildings. In addition, the utilization of remote web services to host the cloud-based architecture significantly minimizes the amount of technical expertise generally necessary to create such systems. In addition, we provide significant lessons learned from the installation process and we list indicative prices, therefore minimizing uncertainty for other researchers and promoting the use of comparable solutions. Chapter two focuses on Fault Detection and Diagnosis (FDD), a critical component of maintaining optimal HVAC performance and minimizing energy waste. HVAC systems are susceptible to malfunctions over time, leading to increased energy consumption and higher maintenance costs. FDD techniques play a vital role in identifying and diagnosing these faults early on, allowing for timely repairs and preventing further deterioration. This chapter introduces a novel bi-level machine learning framework for diagnosing faults in air handling units. This framework addresses key challenges associated with FDD. A bi-level machine learning framework is developed for diagnosing faults in air handling units (AHUs) and rooftop units (RTUs) based on principal component analysis (PCA), time series anomaly detection, and random forest (RF). By proposing this framework, we address three persistent challenges in this field: (I) minimizing false positives; (II) accounting for data imbalance; and (III) normal condition monitoring of equipment. It is shown that PCA can reduce the dataset dimension with one principal component accounting for 95% of data variance. Also, the random forest could classify the faults with 89% precision for single-zone AHU, 85% precision for RTU, and 79% for multi-zone AHU. Chapter three tackles the practical implementation of Model Predictive Control (MPC) in a real-world commercial building setting. It details the development, implementation, and cost analysis of a universally applicable cloud-based MPC framework for HVAC control systems. This chapter offers valuable insights into the feasibility and effectiveness of MPC in achieving energy efficiency goals while maintaining occupant comfort. The chapter delves into the hardware and software components used for data acquisition and MPC implementation. It emphasizes the use of cloud-based microservices to ensure seamless integration with existing building management systems, promoting wider adoption of this advanced control strategy. Three innovative control strategies are presented and evaluated in this chapter. The chapter presents compelling evidence for the effectiveness of these strategies, showcasing significant energy savings of up to 19.21%. Chapter four focuses on Occupancy-based Demand Controlled Ventilation (DCV) as a means to optimize indoor air quality (IAQ) while minimizing energy consumption. This chapter highlights the growing importance of IAQ in the wake of the COVID-19 pandemic and its impact on occupant health and well-being. Current ventilation standards often rely on static occupancy assumptions, which can lead to over-ventilation during unoccupied pe riods and wasted energy. This chapter proposes a dynamic occupant behavior model using machine learning algorithms to predict CO2 concentrations within buildings. The chapter investigates the performance of various machine learning algorithms, ultimately identify ing a Multilayer Perceptron (MLP) as the most effective in predicting CO2 levels under dynamic occupancy conditions. This model allows for real-time modulation of ventilation rates, ensuring adequate IAQ while minimizing energy consumption. The concluding chapter presents experimental findings on the effectiveness of adaptive Variable Frequency Drive (VFD) control strategies in optimizing HVAC energy consump tion. Variable Frequency Drives allow for adjusting the speed of electric motors, including those powering HVAC fans. This chapter explores the potential of using real-time occu pancy predictions to optimize VFD operation. The proposed control strategy demonstrates impressive energy savings, achieving a 51.4% reduction in HVAC fan energy consumption while adhering to ASHRAE IAQ standards. This chapter paves the way for occupant-centric ventilation strategies that prioritize both human health and energy efficiency. These results underscore the potential of predictive control systems to transform building operations to ward greater sustainability and efficiency. The chapter acknowledges the need for further validation through extended monitoring and analysis. In summary, this thesis contributes significantly to the advancement of smart building technologies by proposing practical frameworks for implementing advanced control strategies in HVAC systems. The findings presented here offer valuable insights for building designers, engineers, facility managers, and policymakers interested in creating sustainable, energy efficient, and occupant-centric buildings. The developed frameworks have the potential to be applied across a wide range of building types and climatic conditions, promoting broader adoption of smart building technologies and contributing to a more sustainable built environment.</p>
206

Linearization Based Model Predictive Control of a Diesel Engine with Exhaust Gas Recirculation and Variable-Geometry Turbocharger

Gustafsson, Jonatan January 2021 (has links)
Engine control systems aim to ensure satisfactory output performance whilst adhering to requirements on emissions, drivability and fuel efficiency. Model predictive control (MPC) has shown promising results when applied to multivariable and nonlinear systems with operational constraints, such as diesel engines. This report studies the torque generation from a mean-value heavy duty diesel engine with exhaust gas recirculation and variable-geometry turbocharger using state feedback linearization based MPC (LMPC). This is accomplished by first introducing a fuel optimal reference generator that converts demands on torque and engine speed to references on states and control signals for the MPC controller to follow. Three different MPC controllers are considered: a single linearization point LMPC controller and two different successive LMPC (SLMPC) controllers, where the controllers are implemented using the optimization tool CasADi. The MPC controllers are evaluated with the World Harmonized Transient Cycle and the results show promising torque tracking using a SLMPC controller with linearization about reference values.
207

Control of an Over-Actuated Vehicle for Autonomous Driving and Energy Optimization : Development of a cascade controller to solve the control allocation problem in real-time on an autonomous driving vehicle / Styrning av ett överaktuerat fordon för självkörande drift och energioptimering : Utveckling av en kaskadregulator för att lösa problemet med styrningsallokering i realtid för autonoma fordon

Grandi, Gianmarco January 2023 (has links)
An Over-Actuated (OA) vehicle is a system that presents more control variables than degrees of freedom. Therefore, more than one configuration of the control input can drive the system to a desired state in the state space, and this redundancy can be exploited to fulfill other tasks or solve further problems. In particular, nowadays, challenges concerning electric vehicles regarding their autonomy and solutions to reduce energy consumption are becoming more and more attractive. OA vehicles, on this problem, offer the possibility of using the redundancy to choose the control input, among possible ones, so as to minimize energy consumption. In this regard, the research objective is to investigate different techniques to control in real-time an over-actuated autonomous driving vehicle to guarantee trajectory following and stability with the aim of minimizing energy consumption. The research project focuses on a vehicle able to drive and steer the four wheels (4WD, 4WS) independently. This work extends the contribution of previous theoretical energy-based research developed and provides a control algorithm that must work in real-time on a prototype vehicle (RCV-E) developed at the Integrated Transport Research Lab (ITRL) within KTH with the over-actuation investigated. To this end, the control algorithm has to balance the complexity of a multi-input system, the optimal allocation objectives, and the agility to run in real-time on the MicroAutoBox II - dSPACE system mounted on the vehicle. The solution proposed is a two-level controller which handles separately high and low-rate dynamics with an adequate level of complexity. The upper level is responsible for trajectory following and energy minimization. The allocation problem is solved in two steps. A Linear Time-Varying Model Predictive Controller (LTV-MPC) solves the trajectory-following problem and allocates the forces at the wheels considering the wheel energy losses due to longitudinal and lateral sliding. The second step re-allocates the longitudinal forces between the front and rear axles by considering each side of the vehicle independently to minimize energy loss in the motors. The lower level is responsible for transforming the forces at the wheels into torques and steering angles; it runs at a faster rate than the upper level to account for the high-frequency dynamics of the wheels. Last, the overall control strategy is tested in simulation concerning the trajectory-following and energy minimization performance. The real-time performance are assessed on MircoAutoBox II, the control interface used on the RCV-E. / Ett fordon med olika grad av över-aktuering är ett system som har fler kontrollvariabler än frihetsgrader. Därför kan mer än en konfiguration av styrinmatningen driva systemet till ett önskat tillstånd i tillståndsrummet, och denna redundans kan utnyttjas för att utföra andra uppgifter eller lösa andra problem. I synnerhet blir det i dag allt mer attraktivt med utmaningar som rör elfordon när det gäller deras självklörande drift och lösningar för att minska energiförbrukningen. Överaktuerat fordon ger möjlighet att använda redundansen för att välja en av de möjliga styrinmatningarna för att minimera energiförbrukningen. Forskningsmålet är att undersöka olika tekniker för att i realtid styra ett självkörande fordon som är överaktuerat för att garantera banföljning och stabilitet i syfte att minimera energiförbrukningen. Forskningsprojektet är inriktat på ett fordon som kan köra och styra de fyra hjulen (4WD, 4WS) självständigt. Detta arbete utökar bidraget från den tidigare teoretisk energi-baserade forskning som utvecklats genom att tillhandahålla en regleralgoritm som måste fungera i realtid på ett prototypfordon (RCV-E) som utvecklats vid ITRL inom KTH med den undersökta överaktueringen. I detta syfte måste regleralgoritmen balansera komplexiteten hos ett system med flera ingångar, målen för optimal tilldelning och smidigheten samt att fungera i realtid på MicroAutoBox II - dSPACE-systemet som är monterat på fordonet. Den föreslagna lösningen är en tvåstegsstyrning som hanterar dynamiken med hög och låg hastighet separat med en lämplig komplexitetsnivå. Den övre nivån ansvarar för banföljning och energiminimering. Tilldelningsproblemet löses i två steg. En LTV-MPC löser banföljningsproblemet och fördelar krafterna på hjulen med hänsyn till energiförlusterna på hjulen på grund av longitudinell och lateral glidning. I det andra steget omfördelas de längsgående krafterna mellan fram- och bakaxlarna genom att varje fordonssida beaktas oberoende av varandra för att minimera energiförlusterna i motorerna. Den lägre nivån ansvarar för att omvandla krafterna vid hjulen till vridmoment och styrvinklar; den körs i snabbare takt än den övre nivån för att ta hänsyn till hjulens högfrekventa dynamik. Slutligen testas den övergripande reglerstrategin i simulering med avseende på banföljning och energiminimering, och därefter på MircoAutoBox II monterad på RCV-E för att bedöma realtidsprestanda. / Un veicolo sovra-attuato è un sistema che presenta più variabili di controllo che gradi di libertà. Pertanto, più di una configurazione dell’ingresso di controllo può portare il sistema a uno stato desiderato nello spazio degli stati e questa ridondanza può essere sfruttata per svolgere altri compiti o risolvere ulteriori problemi. In particolare, al giorno d’oggi le sfide relative ai veicoli elettrici per quanto riguarda la loro autonomia e le soluzioni per ridurre il consumo energetico stanno diventando sempre più interessanti. I veicoli sovra-attuati, riguardo a questo problema, offrono la possibilità di utilizzare la ridondanza per scegliere l’ingresso di controllo, tra quelli possibili, che minimizza i consumi energetici. A questo proposito, l’obiettivo della ricerca è studiare diverse tecniche per controllare, in tempo reale, un veicolo a guida autonoma sovra-attuato per garantire l’inseguimento della traiettoria e la stabilità con l’obiettivo di minimizzare il consumo energetico. Questo studio si concentra su un veicolo in grado di guidare e sterzare le quattro ruote (4WD, 4WS) in modo indipendente, ed estende il contributo delle precedenti ricerche teoriche fornendo un algoritmo di controllo che deve funzionare in tempo reale su un prototipo di veicolo (RCV-E) sviluppato presso l’ITRL all’interno del KTH, che presenta la sovra-attuazione studiata. A tal fine, l’algoritmo di controllo deve bilanciare la complessità di un sistema a più ingressi, gli obiettivi di allocazione dell’azione di controllo ottimale e l’agilità di funzionamento in tempo reale sul sistema MicroAutoBox II - dSPACE montato sul veicolo. La soluzione proposta è un controllore a due livelli che gestisce separatamente le dinamiche ad alta e bassa frequenza. Il livello superiore è responsabile dell’inseguimento della traiettoria e della minimizzazione dell’energia. Il problema di allocazione viene risolto in due fasi. Un LTV-MPC risolve il problema dell’inseguimento della traiettoria e assegna le forze alle ruote tenendo conto delle perdite di energia agli pneumatici dovute al loro scorrimento longitudinale e laterale. Il secondo passo rialloca le forze longitudinali tra l’asse anteriore e quello posteriore considerando ciascun lato del veicolo in modo indipendente per minimizzare le perdite di energia nei motori. Il livello inferiore è responsabile della trasformazione delle forze alle ruote in coppia e angolo di sterzo; funziona a una più alta frequenza rispetto al livello superiore per tenere conto delle dinamiche veloci delle ruote. Infine, la strategia di controllo viene testata in simulazione per quanto riguarda le prestazioni di inseguimento della traiettoria e di minimizzazione dell’energia, e successivamente su MircoAutoBox II montato sull’RCV-E per valutare le prestazioni in tempo reale.
208

Model predictive control of a magnetically suspended flywheel energy storage system / Christiaan Daniël Aucamp

Aucamp, Christiaan Daniël January 2012 (has links)
The goal of this dissertation is to evaluate the effectiveness of model predictive control (MPC) for a magnetically suspended flywheel energy storage uninterruptible power supply (FlyUPS). The reason this research topic was selected was to determine if an advanced control technique such as MPC could perform better than a classical control approach such as decentralised Proportional-plus-Differential (PD) control. Based on a literature study of the FlyUPS system and the MPC strategies available, two MPC strategies were used to design two possible MPC controllers were designed for the FlyUPS, namely a classical MPC algorithm that incorporates optimisation techniques and the MPC algorithm used in the MATLAB® MPC toolbox™. In order to take the restrictions of the system into consideration, the model used to derive the controllers was reduced to an order of ten according to the Hankel singular value decomposition of the model. Simulation results indicated that the first controller based on a classical MPC algorithm and optimisation techniques was not verified as a viable control strategy to be implemented on the physical FlyUPS system due to difficulties obtaining the desired response. The second controller derived using the MATLAB® MPC toolbox™ was verified to be a viable control strategy for the FlyUPS by delivering good performance in simulation. The verified MPC controller was then implemented on the FlyUPS. This implementation was then analysed in order to validate that the controller operates as expected through a comparison of the simulation and implementation results. Further analysis was then done by comparing the performance of MPC with decentralised PD control in order to determine the advantages and limitations of using MPC on the FlyUPS. The advantages indicated by the evaluation include the simplicity of the design of the controller that follows directly from the specifications of the system and the dynamics of the system, and the good performance of the controller within the parameters of the controller design. The limitations identified during this evaluation include the high computational load that requires a relatively long execution time, and the inability of the MPC controller to adapt to unmodelled system dynamics. Based on this evaluation MPC can be seen as a viable control strategy for the FlyUPS, however more research is needed to optimise the MPC approach to yield significant advantages over other control techniques such as decentralised PD control. / Thesis (MIng (Computer and Electronic Engineering))--North-West University, Potchefstroom Campus, 2013
209

Structure-Exploiting Numerical Algorithms for Optimal Control

Nielsen, Isak January 2017 (has links)
Numerical algorithms for efficiently solving optimal control problems are important for commonly used advanced control strategies, such as model predictive control (MPC), but can also be useful for advanced estimation techniques, such as moving horizon estimation (MHE). In MPC, the control input is computed by solving a constrained finite-time optimal control (CFTOC) problem on-line, and in MHE the estimated states are obtained by solving an optimization problem that often can be formulated as a CFTOC problem. Common types of optimization methods for solving CFTOC problems are interior-point (IP) methods, sequential quadratic programming (SQP) methods and active-set (AS) methods. In these types of methods, the main computational effort is often the computation of the second-order search directions. This boils down to solving a sequence of systems of equations that correspond to unconstrained finite-time optimal control (UFTOC) problems. Hence, high-performing second-order methods for CFTOC problems rely on efficient numerical algorithms for solving UFTOC problems. Developing such algorithms is one of the main focuses in this thesis. When the solution to a CFTOC problem is computed using an AS type method, the aforementioned system of equations is only changed by a low-rank modification between two AS iterations. In this thesis, it is shown how to exploit these structured modifications while still exploiting structure in the UFTOC problem using the Riccati recursion. Furthermore, direct (non-iterative) parallel algorithms for computing the search directions in IP, SQP and AS methods are proposed in the thesis. These algorithms exploit, and retain, the sparse structure of the UFTOC problem such that no dense system of equations needs to be solved serially as in many other algorithms. The proposed algorithms can be applied recursively to obtain logarithmic computational complexity growth in the prediction horizon length. For the case with linear MPC problems, an alternative approach to solving the CFTOC problem on-line is to use multiparametric quadratic programming (mp-QP), where the corresponding CFTOC problem can be solved explicitly off-line. This is referred to as explicit MPC. One of the main limitations with mp-QP is the amount of memory that is required to store the parametric solution. In this thesis, an algorithm for decreasing the required amount of memory is proposed. The aim is to make mp-QP and explicit MPC more useful in practical applications, such as embedded systems with limited memory resources. The proposed algorithm exploits the structure from the QP problem in the parametric solution in order to reduce the memory footprint of general mp-QP solutions, and in particular, of explicit MPC solutions. The algorithm can be used directly in mp-QP solvers, or as a post-processing step to an existing solution. / Numeriska algoritmer för att effektivt lösa optimala styrningsproblem är en viktig komponent i avancerade regler- och estimeringsstrategier som exempelvis modellprediktiv reglering (eng. model predictive control (MPC)) och glidande horisont estimering (eng. moving horizon estimation (MHE)). MPC är en reglerstrategi som kan användas för att styra system med flera styrsignaler och/eller utsignaler samt ta hänsyn till exempelvis begränsningar i styrdon. Den grundläggande principen för MPC och MHE är att styrsignalen och de estimerade variablerna kan beräknas genom att lösa ett optimalt styrningsproblem. Detta optimeringsproblem måste lösas inom en kort tidsram varje gång som en styrsignal ska beräknas eller som variabler ska estimeras, och således är det viktigt att det finns effektiva algoritmer för att lösa denna typ av problem. Två vanliga sådana är inrepunkts-metoder (eng. interior-point (IP)) och aktivmängd-metoder (eng. active-set (AS)), där optimeringsproblemet löses genom att lösa ett antal enklare delproblem. Ett av huvudfokusen i denna avhandling är att beräkna lösningen till dessa delproblem på ett tidseffektivt sätt genom att utnyttja strukturen i delproblemen. Lösningen till ett delproblem beräknas genom att lösa ett linjärt ekvationssystem. Detta ekvationssystem kan man exempelvis lösa med generella metoder eller med så kallade Riccatirekursioner som utnyttjar strukturen i problemet. När man använder en AS-metod för att lösa MPC-problemet så görs endast små strukturerade ändringar av ekvationssystemet mellan varje delproblem, vilket inte har utnyttjats tidigare tillsammans med Riccatirekursionen. I denna avhandling presenteras ett sätt att utnyttja detta genom att bara göra små förändringar av Riccatirekursionen för att minska beräkningstiden för att lösa delproblemet. Idag har behovet av  parallella algoritmer för att lösa MPC och MHE problem ökat. Att algoritmerna är parallella innebär att beräkningar kan ske på olika delar av problemet samtidigt med syftet att minska den totala verkliga beräkningstiden för att lösa optimeringsproblemet. I denna avhandling presenteras parallella algoritmer som kan användas i både IP- och AS-metoder. Algoritmerna beräknar lösningen till delproblemen parallellt med ett förutbestämt antal steg, till skillnad från många andra parallella algoritmer där ett okänt (ofta stort) antal steg krävs. De parallella algoritmerna utnyttjar problemstrukturen för att lösa delproblemen effektivt, och en av dem har utvärderats på parallell hårdvara. Linjära MPC problem kan också lösas genom att utnyttja teori från multiparametrisk kvadratisk programmering (eng. multiparametric quadratic programming (mp-QP)) där den optimala lösningen beräknas i förhand och lagras i en tabell, vilket benämns explicit MPC. I detta fall behöver inte MPC problemet lösas varje gång en styrsignal beräknas, utan istället kan den förberäknade optimala styrsignalen slås upp. En nackdel med mp-QP är att det krävs mycket plats i minnet för att spara lösningen. I denna avhandling presenteras en strukturutnyttjande algoritm som kan minska behovet av minne för att spara lösningen, vilket kan öka det praktiska användningsområdet för mp-QP och explicit MPC.
210

Multiplicative robust and stochastic MPC with application to wind turbine control

Evans, Martin A. January 2014 (has links)
A robust model predictive control algorithm is presented that explicitly handles multiplicative, or parametric, uncertainty in linear discrete models over a finite horizon. The uncertainty in the predicted future states and inputs is bounded by polytopes. The computational cost of running the controller is reduced by calculating matrices offline that provide a means to construct outer approximations to robust constraints to be applied online. The robust algorithm is extended to problems of uncertain models with an allowed probability of violation of constraints. The probabilistic degrees of satisfaction are approximated by one-step ahead sampling, with a greedy solution to the resulting mixed integer problem. An algorithm is given to enlarge a robustly invariant terminal set to exploit the probabilistic constraints. Exponential basis functions are used to create a Robust MPC algorithm for which the predictions are defined over the infinite horizon. The control degrees of freedom are weights that define the bounds on the state and input uncertainty when multiplied by the basis functions. The controller handles multiplicative and additive uncertainty. Robust MPC is applied to the problem of wind turbine control. Rotor speed and tower oscillations are controlled by a low sample rate robust predictive controller. The prediction model has multiplicative and additive uncertainty due to the uncertainty in short-term future wind speeds and in model linearisation. Robust MPC is compared to nominal MPC by means of a high-fidelity numerical simulation of a wind turbine under the two controllers in a wide range of simulated wind conditions.

Page generated in 0.0343 seconds