• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 171
  • 159
  • 64
  • 16
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 529
  • 338
  • 84
  • 71
  • 67
  • 62
  • 52
  • 47
  • 47
  • 42
  • 41
  • 39
  • 39
  • 37
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Stereoselective disposition of bupropion and its three major metabolites : 4-hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion / Stereoselective method to quantify bupropion and its three major metabolites, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion using HPLC-MS/MS

Masters, Andrea Renee 14 February 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A version of this thesis was published as: Masters AR, McCoy M, Jones DR, and Desta Z. Stereoselective method to quantify bupropion and its three major metabolites, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion using HPLC-MS/MS. J Chromatography B Analyt Technol Biomed Life Sci 1015-1016:201-208, 2016. / Bupropion is a dual dopamine-norepinephrine uptake inhibitor and a nicotine receptor antagonist. Clinically, bupropion is given as a racemate for the management of depression, smoking cessation aid, and for the management of weight. Bupropion has also been targeted as a phenotypic probe of CYP2B6 activity. Bupropion metabolites are formed via oxidation (4-hydroxybupropion) through CYP2B6, and reduction (erythro- and threo-dihydrobupropion) through carbonyl reductases. These metabolites exhibit pharmacological activity, but little is known regarding their stereoselective disposition due to the lack of a chiral assay. A novel reversed phase chiral-HPLC-MS/MS method involving a simple liquid-liquid extraction procedure and a small plasma sample volume (50µL) was developed that allowed simultaneous separation and quantification of enantiomers of bupropion, 4-hydroxybupropion, and those of threo- and erythro-dihydrobupropion in human plasma. This method was successfully implemented to determine the unique stereoselective disposition of bupropion and its metabolites in 15 human volunteers administered a single 100 mg oral dose of racemic bupropion. Significant differences (p<0.05) in the stereoselective metabolism were observed for all of the enantiomers. The highest plasma exposure (AUC0-∞) was (2R, 3R)-4-hydoxybupropion, almost 65 fold higher, than (2S, 3S)-4-hydoxybupropion, and over 32 fold greater than the parent R-bupropion. The second highest plasma exposure was threo-dihydrobupropion A, which was almost 5 fold higher than threo-dihydrobupropion B. (Nomenclature of the enantiomers for erythro- and threo-dihydrobupropion was based on the chromatography of the first eluting peak as “A” and the second eluting peak as “B”.) Threo-dihydrobupropion A and B showed the most significant difference between the racemic and enantiomer profiles. Although the AUC was greater for threo-dihydrobupropion B, threo-dihydrobupropion A had a significantly (p<0.05) higher Cmax. The half-life for threo-dihydrobupropion A and erythro-dihydrobupropion A were the longest for all analytes, which could indicate accumulation in multiple dosing. The importance of this study was, for the first time, to be able to characterize the stereoselective metabolism of bupropion and its three major metabolites. This new method and subsequent pharmacokinetic data should enhance further research into bupropion stereoselective metabolism, drug interactions, and effect. / A version of this thesis was published as: Masters AR, McCoy M, Jones DR, and Desta Z. Stereoselective method to quantify bupropion and its three major metabolites, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion using HPLC-MS/MS. J Chromatography B Analyt Technol Biomed Life Sci 1015-1016:201-208, 2016.
292

STUDY ON TREATMENT TECHNOLOGIES FOR PERFLUOROCHEMICALS IN WASTEWATER / 下水中のペルフルオロ化合物の処理技術に関する研究 / ゲスイチュウ ノ ペルフルオロ カゴウブツ ノ ショリ ギジュツ ニ カンスル ケンキュウ

Qiu, Yong 23 July 2007 (has links)
学位授与年月日: 2007-07-23 ; 学位の種類: 新制・課程博士 ; 学位記番号: 工博第2837号 / Perfluorochemicals (PFCs) were produced by industries and consumed “safely” as surfactants, repellents, additives, fire-fighting foams, polymer emulsifiers and insecticides for almost fifty years. However they are now considered as persistent, bioaccumulated and toxic (PBT) chemicals, and ubiquitously distributed in waster, air, human body and biota. Although some efforts were contributed to reduce PFCs in environment, such as development of alternatives and recycling processes, huge amount of persisted PFCs have already been discharged in environment and accumulated in biota including humans. In some industrialized areas, such as Yodo river basin in Japan, water environment and human blood were polluted by some PFCs, and thus reduction and control of PFCs were urgently required for the purpose of environmental safety and human health in these areas. Unfortunately, some studies implied that current water and wastewater treatment processes seemed ineffective to remove PFCs in trace levels. Therefore, this study will try to develop some proper technologies to treat trace level of PFCs in wastewater. In order to achieve this main objective, several works have been accomplished as follows.  Current available literature has been reviewed to obtain a solid background for this study. Basic information of PFCs was summarized in physiochemical properties, PBT properties, productions and applications, regulations and etc.. Analytical methods for PFCs, especially of LC-ESI-MS/MS, were reviewed including pretreatment processes in diverse matrices, which derived objectives of chapter III. Distributions and behavior of PFCs were briefly discussed in water environments, biota sphere and human bloods. Available control strategies were shown in detail about alternatives, industrial recycling processes, and newly developed treatment processes. Current wastewater treatment processes showed inefficient removal for some PFCs, deriving objectives of chapter IV on the PFC behavior in treatment process. Newly developed treatment technologies seemed able to decompose PFCs completely but unsuitable for application in WWTP. Therefore, granular activated carbon (GAC) adsorption and ultra violet (UV) photolysis were developed in chapter V and VI as removal and degradation processes respectively.  Fifteen kinds of PFCs were included in this study, consisting of twelve kinds of perfluorocarboxylic acids (PFCAs) with 4~18 carbons and three kinds of perfluoroalkyl sulfonates (PFASs) with 4~8 carbons. An integral procedure was developed in chapter III to pretreat wastewater samples. LC-ESI-MS/MS was applied to quantify all PFCs in trace level. Pretreatment methods were optimized between C18 and WAX-SPE processes for aqueous samples, and between IPE, AD-WAX and ASE-WAX processes for particulate samples. Standard spiking experiments were regularly conducted for each wastewater sample to calculate recovery rate and control analytical quality. As the result, WAX-SPE showed better performance on samples with very high organics concentrations, and C18-SPE performed better for long-chained PFCs. ASE-WAX was proposed as the optimum method to pretreat particulate samples because of the simple and time saving operations. 9H-PFNA was used as internal standard to estimate matrix effect in wastewater.  Behavior of PFCs in a municipal WWTP has been studied in chapter IV by periodical surveys for six times in half a year. All PFCs used in this study were detected in WWTP influent and effluent. According to their carbon chain lengths, all PFCs can be classified into “Medium”, “Long” and “Short” patterns to simplify behavior analysis. PFCs in same pattern showed similar properties and behavior in wastewater treatment facilities. Very high concentrations of PFCs existed in WWTP influent, indicating some point sources of industrial discharge in this area. “Medium” PFCs, such as PFOA(8), PFNA(9) and PFOS(8), were primary contaminants in the WWTP and poorly removed by overall process. Performances of individual facilities were estimated for removal of each PFC. Primary clarification and secondary clarification were helpful to remove all PFCs in both aqueous phase and particulate phase. “Medium” PFCs in aqueous phase were increased after activated sludge process, but other PFCs can be effectively removed. Ozone seemed ineffective to decompose PFCs because of the strong stability of PFC molecules. Sand filtration and biological activated carbon (BAC) filtration in this WWTP can not remove PFCs effectively too, which required further studies. Performances of combined processes were estimated by integrating individual facilities along the wastewater flow. Activated sludge process coupled with clarifiers showed satisfied removal of most PFCs in the investigated WWTP except “Medium” PFCs.  Adsorption characteristics of PFCs onto GAC have been studied by batch experiments in chapter V. Freundlich equation and homogenous surface diffusion model (HSDM) were applied to interpret experimental data. Isothermal and kinetics experiments implied that PFC adsorption on GAC was directly related with their carbon chain lengths. By ascendant carbon chain length, adsorption capacity for specific PFC was increased, and diffusion coefficient (Ds) was decreased. Ds of GAC adsorption was also decreased gradually in smaller GAC diameters. Coexisted natural organic matters (NOMs) reduced adsorption capacities by mechanism of competition and carbon fouling. Carbon fouling was found reducing adsorption capacity much more intensively than competition by organics. Acidic bulk solution was slightly helpful for adsorption of PFCs. However adsorption velocity or kinetics was not affected by NOM and pH significantly. GAC from Wako Company showed the best performance among four kinds of GACs, and Filtra 400 from Calgon Company was considered more suitable to removal all PFCs among the commercial GACs. Preliminary RSSCT and SBA results implied that background organics broke through fixed GAC bed much earlier than trace level of PFCs. Medium-chained PFCs can be effectively removed by fixed bed filtration without concerning biological processes.  Direct photolysis process has been developed in chapter VI to decompose PFCAs in river water. Irradiation at UV254 nm and UV254+185 nm can both degrade PFCAs. Stepwise decomposition mechanism of PFCAs was confirmed by mass spectra analysis, and consecutive kinetics was proposed to simulate experimental data. PFASs can also be degraded by UV254+185 photolysis, although the products have not been identified yet. Coexisted NOMs reduced performance of UV photolysis for PFCAs by competition for UV photons. Sample volume or irradiation intensity showed significant influence on degradation of PFCAs. Local river water polluted by PFOA can be cleaned up by UV254+185 photolysis effectively. Ozone-related processes were also studied but ineffective to degrade PFC molecules. However, PFCs could be removed in aeration flow by another mechanism. / 京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第13340号 / 工博第2837号 / 新制||工||1417(附属図書館) / UT51-2007-M963 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 田中 宏明, 教授 藤井 滋穂, 教授 伊藤 禎彦 / 学位規則第4条第1項該当 / Doctor of Engineering / Kyoto University / DFAM
293

Validering av en LC-MS/MS metod för aripiprazol och dess aktiva metabolit i humant serum / Validation of a LC-MS/MS method for quantification of aripiprazole and its active metabolite in human serum

Nilsson, Sara January 2023 (has links)
Aripiprazol är den aktiva substansen i läkemedel för bipolaritet och schizofreni och metaboliseras av två enzym till den aktiva metaboliten dehydroaripiprazol. Till följd av interindividuella skillnader i aktiviteten hos enzymen samt att koncentrationen in vivo kan påverkas av andra läkemedel rekommenderas terapeutisk läkemedelsövervakning (TDM). Därmed har en selektiv och känslig vätskekromatografi- tandem masspektrometri (LC-MS/MS) validerats för kvantifiering av aripiprazol och dess aktiva metabolit dehydroaripiprazol i humant serum vid Specialkemi, Klinisk kemi och farmakologi vid Lunds universitetssjukhus utifrån interna kriterier byggda på riktlinjer från European Medicine Agency (EMA). LC-MS/MS analys utfördes på Tripple Quad 6500+ från AB Sciex med joniserande elektrospray (ESI) och multi reaction monitoring (MRM). Valideringen fastslog metodens mätområde till 4 – 2 500 nmol/L och kvantifieringsgräns till 4 nmol/L för respektive analyt. Metodens inomdags- och mellandags noggrannhet (variationskoefficient (CV%)) och riktighet (nominell differens) för kontrollprover (10 och 1 000 nmol/L) var mellan 3,5 – 9,1 % och mellan -6,8 – -13,0 för respektive analyt vilket var inom godkända kriterier. Innan metoden implementeras på kliniska prover bör framtida utvärdering undersöka om minimering av provsmittan är möjlig samt utvärdera långtidsstabiliteten av analyterna.
294

The role of off-axis hydrothermal systems as an oceanic potassium sink

Laureijs, Christiaan Thomas 02 September 2021 (has links)
Inputs of the major element potassium into the ocean from rivers and on-axis high temperature hydrothermal systems have likely varied on geological timescales. Variable uptake of potassium into lavas altered in low-temperature, off-axis, hydrothermal systems could keep the potassium concentration in seawater within the narrow range (~9.5 to 11 mmol L-1) observed in the Phanerozoic. To test this hypothesis a better understanding of the timing of alteration, and of the role of changing environmental conditions on seawater/basalt reactions is required. The age of 69 samples of the secondary, potassium-rich, phyllosilicate mineral celadonite from lavas in the Troodos ophiolite were determined using Rb-Sr radiometric dating to test whether potassium uptake occurs within a specific time interval. Measurements used tandem quadrupole ICP-MS/MS. Combined with published radiometric ages the dataset revealed regional differences in the duration of celadonite formation in the Troodos ophiolite lavas. In one area, where significant hydrothermal sediments were deposited on the lavas, celadonite formed as much as ~40 Myr after the crust accreted, whereas in an area with rare hydrothermal sediments celadonite formation was largely limited to the first ~20 Myr after crustal accretion. These differences in duration of celadonite formation in the upper oceanic crust are interpreted as reflecting differences in distribution of hydrothermal sediments that act as a source of labile Fe that is needed for celadonite formation. To test if there are significant variations of duration and timing of celadonite formation on various scales in the upper oceanic crust I measured the first in-situ Rb-Sr ages of celadonite in lavas from DSDP and ODP drill cores. These ages show that ~80% of celadonite formed from pervasive fluid flow within the first ~20 Myr after the oceanic crust accreted. All celadonite ages roughly correlate with the cumulative heat flow removed from the oceanic lithosphere in the same time interval. In combination the >100 new celadonite ages presented here provide strong evidence that most celadonite forms in the first ~20 Myr after crustal accretion and environmental conditions could be significant in controlling potassium uptake. To determine whether the potassium sink from seawater into altered seafloor lavas varied over time I compile a dataset of the potassium content of lavas from DSDP and ODP drill cores (0 to 180 Myr age range). Estimates of the average potassium content of individual holes reveal that this varies with age. However, holes of similar age show a similar magnitude of variability to that which occurs over this time. To investigate the source of the variability of potassium in altered lavas I modelled the effects of bottom seawater temperature and pH using PHREEQC. The models indicate that if the fluid is in equilibrium with K-feldspar, Na-beidellite and calcite, an increase in bottom seawater temperature and/or decrease in pH would lead to the potassium concentration in the off-axis fluid to increase significantly. This emphasizes the need for future studies to investigate feedback mechanisms between low-temperature hydrothermal alteration in response to changing environmental conditions. / Graduate / 2022-07-12
295

Development and Validation of an UPLC-MSMS Method for the Analysis of Patulin in Apple-based Food Products

Hjortsberg, Tobias January 2022 (has links)
This project focused on the development and validation of an ultra-performance liquid chromatography tandem mass spectrometer (UPLC-MS/MS) method for the determination of Patulin in apple-based products. Patulin is one of the many mycotoxins that are secondary metabolites from about 60 filamentous fungi. The mold often appears as black or blue on fruit, vegetables or crops. To determine the concentration of Patulin in consumer products is important since it may affect consumer health. The symptoms are often flu-like and can lead to kidney-failure and neurotic damage. The Swedish Food Agency is tasked to analyze consumer products to determine if they are safe to ingest. The European Commission has set maximum residue limits for several toxins that can potentially appear in groceries on the market. Using an UPLC-MS/MS allows for the accurate qualification and quantification of Patulin in apple juice and purees. The method was validated by analyzing several lots of apple juices and a proficiency test from Fapas®. The recovery rate ranged between 70.5-103.8% and were accepted because they met the recovery criteria in Regulation (EC) No. 401/2006 for Patulin.
296

Enhanced Detection Strategies Accomplished Through Metal Binding and Miniature Mass Spectrometry

Graichen, Adam 01 February 2013 (has links)
A multiplexed method for performing MS/MS on multiple ions simultaneously in a miniature rectilinear ion trap (RIT) mass spectrometer has been developed. This method uses an ion encoding procedure that relies on the mass bias that exists when ions are externally injected into an RIT operated with only a single phase RF applied to one pair of electrodes. The ion injection profile under such conditions ions is Gaussian-like over a wide range of RF amplitudes, or low mass cutoff (LMCO) values, during ion accumulation. We show that this distribution is related to ion m/z and is likely caused by ions having an optimal range of pseudo-potential well depths for efficient trapping. Based on this observation, precursor ion intensity changes between two different injection LMCO values can be predicted, and these ion intensity changes are found to be carried through to their corresponding product ions, enabling multiplexed MS/MS spectra to be deconvoluted. The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWA. Results show that the metal complex ions can react with low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below the median lethal doses for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations. Mass spectrometry has become a tool for studying noncovalently bound complexes. Specifically, electrospray ionization mass spectrometry (ESI-MS) has found increasing use for the determination of affinity (Ka) or dissociation (Kd) constants. Direct measurement of the equilibrium components by ESI-MS is the most straightforward approach for determining binding equilibrium constants, but this approach is prone to error and has some inherent limitations. Transferring complexes from solution to the gas phase may perturb the equilibrium concentrations and/or different ionization efficiencies may cause the resulting ion signals not to reflect actual solution concentrations. Furthermore, ESI only works under a limited range of solvent conditions (i.e. low ionic strengths), which limits the broad applicability of this approach. We propose an approach based on covalent labeling in the context of metal-catalyzed oxidation (MCO) reactions that, when combined with MS, overcomes such limitations when determining metal-ligand binding constants. The MCO-MS approach will provide concurrent information regarding metal binding site and metal-protein binding affinity. Optimization of the MCO reaction through isotopic mass tags will permit enhanced identification of modified residues. Application of this method to study the affinity and binding interactions of other divalent metals with β2m are likely to provide insight into the specificity of copper for causing β2m amyloid formation.
297

An investigation into the metabolic activation of novel chloromethylindolines by isoforms of cytochrome P450. Targeting drug metabolising enzymes in cancer: analysis of the role and function of selected cytochrome P450 oxidising novel cancer prodrugs

Alandas, Mohammed N. January 2012 (has links)
Introduction Cytochromes P450 (CYPs) are the major family of enzymes responsible for detoxification and metabolism of a wide range of both endogenous and xenobiotics chemicals in living organisms. The use of CYPs to activate prodrugs to cytotoxins selectively in tumours has been explored including AQ4N, Phortress and Aminoflavone. CYP1A1, CYP1B1, CYP2W1, and CYP4F11 have been identified as expressed in tumour tissue and surrounding stroma at high frequency compared to most normal tissues. Aim is to investigate the differential metabolism of novel chloromethylindoline by high frequency expressed CYPs in tumours. This differential may be exploited to elicit a selective chemotherapeutic effect by metabolising inert small molecules to potent cytotoxins within the tumour environment. Materials and Methods Sensitive and specific LC/MS/MS techniques have been developed to investigate the metabolism of chloromethylindolines. Recombinant enzymes and transfected cell lines were used to investigate the metabolic profiles with a focus on production of the cytotoxic derivatives of chloromethylindolines. Results Detailed metabolic studies show that (1-(Chloromethyl)-1,2-dihydropyrrolo [3,2-e]indol-3(6H)-yl)(5-methoxy-1H-indol-2-yl) methanone (ICT2700) and other chloromethylindolines are converted by CYP1A1 mediated hydroxylation at the C-5 position leading to highly potent metabolites. In vitro cytotoxicity studies showed differentials of up to 1000-fold was achieved between CYP1A1 activated compared to the non-metabolised parent molecules. The reactivity of metabolites of ICT2700 was also explored using glutathione as a nucleophile. The metabolites were identified by a combination of LC/MS and LC MS/MS techniques. Investigations using mouse and human liver microsomes show that a large number of metabolites are created though none were shown to be associated with a potential anticancer effect. Studies focused on CYP2W1 show that this isoform metabolised ICT2706 to a cytotoxic species and a pharmacokinetic study showed a good distribution of ICT2706 into mouse tissues including tumour. However metabolism of ICT2726 by CYP2W1 resulted only in a non-toxic metabolite profile and may have potential as a biomarker for functional CYP2W1 in tissues. Preliminary studies show that palmitic acid hydroxylation is a useful marker of functional CYP4F11. Summary and conclusion The in vitro results show that the chloromethylindolines are a novel class of agent with potential as prodrugs that following specific hydroxylation by CYP1A1 and CYP2W1 are converted to ultra-potent cytotoxins. Other metabolites are also evident which are not cytotoxic. Studies in vivo show that selected chloromethylindolines possess a good pharmacokinetic profile and show potential as prodrug anticancer agents that require activation by CYP1A1 or CYP2W1. The methods, results, progress and suggestions for future work are presented in this thesis.
298

Structure, absorption, and bioactivities of pyroglutamyl peptides in food protein hydrolysates / 食品タンパク質酵素分解物中のピログルタミルペプチドの構造、吸収および機能

Miyauchi, Satoshi 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第24678号 / 農博第2561号 / 新制||農||1100(附属図書館) / 学位論文||R5||N5459(農学部図書室) / 京都大学大学院農学研究科応用生物科学専攻 / (主査)教授 佐藤 健司, 教授 菅原 達也, 教授 舟場 正幸 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
299

Determination of PFAS compounds in human serum using laminar flow tandem mass spectrometry

Haynes, Halia Heather 02 February 2023 (has links)
Per- and polyfluoroalkyl substances (PFAS) encompass a large group of manufactured compounds that have been used in various production processes such as food packaging, commercial products, workplaces, homes, water supplies, and food. PFAS are persistent, resistant to degradation, and can bioaccumulate. Although an exposure limit that predicts adverse health effects has yet to be determined, the Center for Disease Control and Prevention’s 2015-16 health survey found average blood levels of 4.72 ng/ml for PFOS and 1.56 ng/ml for PFOA. The objective of this research was to evaluate the use of laminar flow tandem mass spectrometry following solid phase extraction (SPE) using weak anion exchange (WAX) properties on the detection and quantitation of PFAS compounds. Seven-point calibration standards applied to this research were prepared using certified reference materials (Wellington Laboratories, Ontario, CA), and calibrators were run without sample extraction. The concentrations varied slightly based on the PFAS analyte of interest. All samples and quality controls were prepared by spiking certified reference material (Wellington Laboratories) into pooled human serum (BioIVT, Westbury, NY, USA). A laminar flow QSight®220 ultra-high pressure liquid chromatography-tandem mass spectrometer (LC-MS/MS, PerkinElmer, Waltham, MA, USA) was equipped with a Selectra C18 100 x 2.1mm x 3μm (UCT, Bristol, PA, USA) column with a Brownlee C18 delay column (PerkinElmer) and followed the LC-MS/MS parameters developed for the method. Extraction was accomplished using a WAX SPE column (UCT, ECWAX053) by first conditioning the columns with 1 mL of methanol (Fisher Scientific, Fair Lawn, NJ, USA) followed by 1 mL of 100 mM pH 7 phosphate buffer (Acros Organics, Geel, Belgium, EU). Samples were loaded onto the column at a rate of 1-2 mL/min. The SPE cartridges were washed with 1 mL of 100 mM pH 7 phosphate buffer and 1 mL of millipore water (Millipore Milli- Q Ultrapure Type 1 water system, Millipore Sigma, Burlington, MA, USA), then dried under full flow for 5 minutes. Elution was carried out with 2.5mL of a 98:2 methanol: OptimaTM grade ammonium hydroxide (Fisher Scientific) solution. The eluted samples were then evaporated to dryness using a MULTIVAP® Nitrogen Evaporator (Organomation,Berlin,MA,USA) at 55°C and 5psi. All samples were reconstituted in 100 μL of a 96:4 methanol:water solution. The parameters assessed followed Academy Standards Board Standard 036: Standard Practices for Method Validation in Forensic Toxicology, including matrix interferences, limit of detection (LOD), limit of quantitation (LOQ), a recovery study, and a calibration model. The results of the study were gathered from the following eleven analytes: PFBA, PFBS, PFHxA, PFHpA, PFHxS, PFOA, PFOS, PFNA, PFDA, PFUnA, and PFDoA. Depending on the analyte, a lower LOQ was established at 0.16 – 1.75ng/mL and an upper LOQ at 43.75 – 51.41 ng/mL. Based on the established linear calibration model an LOD in the range of 0.11 - 0.51 ng/mL was achieved. All eleven PFAS analytes showed an acceptable bias of ±20%. All analytes showed a between-run precision (%CV) in an acceptable range of ±20%. No matrix interferences were detected. The average recovery for SPE ranges from 77.64- 104.73% with recovery of 77.64% for PFBS, 83.89% for PFBA, and 95.64-104.73% for PFHxA, PFHpA, PFHxS, PFOA, PFOS, PFNA, PFDA, PFUnA, and PFDoA. Utilizing the UCT WAX SPE column, good recovery for the PFAS compounds was demonstrated. Further, the extraction technique was efficient for high throughput analysis with the extraction time comparable to other traditional SPE methods. The total analytical run time of 11 minutes using the QSight®220 coupled with the UCT Selectra C18 100 x 2.1mm x 3μm column allowed for adequate re-equilibration and system washes to prevent carryover and contamination of these persistent pollutants with excellent chromatography. Having the ability to efficiently and accurately quantify PFAS compounds in biological matrices will allow for better understanding of prevalence, bioaccumulation in biological matrices, and will aid in understanding how these concentrations relate to various health outcomes.
300

Insight Into the Molecular Mechanisms Underpinning the Mycoremediation of Multiple Metals by Proteomic Technique

Dey, Priyadarshini, Malik, Anushree, Singh, Dileep Kumar, Haange, Sven-Bastiaan, von Bergen, Martin, Jehmlich, Nico 11 July 2023 (has links)
We investigated the fungus Aspergillus fumigatus PD-18 responses when subjected to the multimetal combination (Total Cr, Cd2C, Cu2C, Ni2C, Pb2C, and Zn2C) in synthetic composite media. To understand how multimetal stress impacts fungal cells at the molecular level, the cellular response of A. fumigatus PD-18 to 30 mg/L multimetal stress (5 mg/L of each heavy metal) was determined by proteomics. The comparative fungal proteomics displayed the remarkable inherent intracellular and extracellular mechanism of metal resistance and tolerance potential of A. fumigatus PD-18. This study reported 2,238 proteins of which 434 proteins were exclusively expressed in multimetal extracts. The most predominant functional class expressed was for cellular processing and signaling. The type of proteins and the number of proteins that were upregulated due to various stress tolerance mechanisms were post-translational modification, protein turnover, and chaperones (42); translation, ribosomal structure, and biogenesis (60); and intracellular trafficking, secretion, and vesicular transport (18). In addition, free radical scavenging antioxidant proteins, such as superoxide dismutase, were upregulated upto 3.45-fold and transporter systems, such as protein transport (SEC31), upto 3.31-fold to combat the oxidative stress caused by the multiple metals. Also, protein–protein interaction network analysis revealed that cytochrome c oxidase and 60S ribosomal protein played key roles to detoxify the multimetal. To the best of our knowledge, this study of A. fumigatus PD-18 provides valuable insights toward the growing research in comprehending the metal microbe interactions in the presence of multimetal. This will facilitate in development of novel molecular markers for contaminant bioremediation.

Page generated in 0.0291 seconds