1 |
Statistical monitoring and prediction of petrochemical processesKaskavelis, Eleftherios January 2001 (has links)
No description available.
|
2 |
A Comparative Study of Prognostic and Health Assessment Methods in Sensor Rich and Sensorless EnvironmentsSkirtich, Tyler 24 September 2012 (has links)
No description available.
|
3 |
FAULT DIAGNOSIS TOOLS IN MULTIVARIATE STATISTICAL PROCESS AND QUALITY CONTROLVidal Puig, Santiago 01 March 2016 (has links)
[EN] An accurate fault diagnosis of both, faults sensors and real process faults have become more and more important for process monitoring (minimize downtime, increase safety of plant operation and reduce the manufacturing cost). Quick and correct fault diagnosis is required in order to put back on track our processes or products before safety or quality can be compromised. In the study and comparison of the fault diagnosis methodologies, this thesis distinguishes between two different scenarios, methods for multivariate statistical quality control (MSQC) and methods for latent-based multivariate statistical process control: (Lb-MSPC). In the first part of the thesis the state of the art on fault diagnosis and identification (FDI) is introduced. The second part of the thesis is devoted to the fault diagnosis in multivariate statistical quality control (MSQC). The rationale of the most extended methods for fault diagnosis in supervised scenarios, the requirements for their implementation, their strong points and their drawbacks and relationships are discussed. The performance of the methods is compared using different performance indices in two different process data sets and simulations. New variants and methods to improve the diagnosis performance in MSQC are also proposed. The third part of the thesis is devoted to the fault diagnosis in latent-based multivariate statistical process control (Lb-MSPC). The rationale of the most extended methods for fault diagnosis in supervised Lb-MSPC is described and one of our proposals, the Fingerprints contribution plots (FCP) is introduced. Finally the thesis presents and compare the performance results of these diagnosis methods in Lb-MSPC. The diagnosis results in two process data sets are compared using a new strategy based in the use of the overall sensitivity and specificity / [ES] La realización de un diagnóstico preciso de los fallos, tanto si se trata de fallos de sensores como si se trata de fallos de procesos, ha llegado a ser algo de vital importancia en la monitorización de procesos (reduce las paradas de planta, incrementa la seguridad de la operación en planta y reduce los costes de producción). Se requieren diagnósticos rápidos y correctos si se quiere poder recuperar los procesos o productos antes de que la seguridad o la calidad de los mismos se pueda ver comprometida. En el estudio de las diferentes metodologías para el diagnóstico de fallos esta tesis distingue dos escenarios diferentes, métodos para el control de estadístico multivariante de la calidad (MSQC) y métodos para el control estadístico de procesos basados en el uso de variables latentes (Lb-MSPC). En la primera parte de esta tesis se introduce el estado del arte sobre el diagnóstico e identificación de fallos (FDI). La segunda parte de la tesis está centrada en el estudio del diagnóstico de fallos en control estadístico multivariante de la calidad. Se describen los fundamentos de los métodos más extendidos para el diagnóstico en escenarios supervisados, sus requerimientos para su implementación sus puntos fuertes y débiles y sus posibles relaciones. Los resultados de diagnóstico de los métodos es comparado usando diferentes índices sobre los datos procedentes de dos procesos reales y de diferentes simulaciones. En la tesis se proponen nuevas variantes que tratan de mejorar los resultados obtenidos en MSQC. La tercera parte de la tesis está dedicada al diagnóstico de fallos en control estadístico multivariante de procesos basados en el uso de modelos de variables latentes (Lb-MSPC). Se describe los fundamentos de los métodos mas extendidos en el diagnóstico de fallos en Lb-MSPC supervisado y se introduce una de nuestras propuestas, el fingerprint contribution plot (FCP). Finalmente la tesis presenta y compara los resultados de diagnóstico de los métodos propuestos en Lb-MSPC. Los resultados son comparados sobre los datos de dos procesos usando una nueva estrategia basada en el uso de la sensitividad y especificidad promedia. / [CA] La realització d'un diagnòstic precís de les fallades, tant si es tracta de fallades de sensors com si es tracta de fallades de processos, ha arribat a ser de vital importància en la monitorització de processos (reduïx les parades de planta, incrementa la seguretat de l'operació en planta i reduïx els costos de producció) . Es requerixen diagnòstics ràpids i correctes si es vol poder recuperar els processos o productes abans de que la seguretat o la qualitat dels mateixos es puga veure compromesa. En l'estudi de les diferents metodologies per al diagnòstic de fallades esta tesi distingix dos escenaris diferents, mètodes per al control estadístic multivariant de la qualitat (MSQC) i l mètodes per al control estadístic de processos basats en l'ús de variables latents (Lb-MSPC). En la primera part d'esta tesi s'introduïx l'estat de l'art sobre el diagnòstic i identificació de fallades (FDI). La segona part de la tesi està centrada en l'estudi del diagnòstic de fallades en control estadístic multivariant de la qualitat. Es descriuen els fonaments dels mètodes més estesos per al diagnòstic en escenaris supervisats, els seus requeriments per a la seua implementació els seus punts forts i febles i les seues possibles relacions. Els resultats de diagnòstic dels mètodes és comparat utilitzant diferents índexs sobre les dades procedents de dos processos reals i de diferents simulacions. En la tesi es proposen noves variants que tracten de millorar els resultats obtinguts en MSQC. La tercera part de la tesi està dedicada al diagnòstic de fallades en control estadístic multivariant de processos basat en l'ús de models de variables latents (Lb-MSPC). Es descriu els fonaments dels mètodes més estesos en el diagnòstic de fallades en MSPC supervisat i s'introdueix una nova proposta, el fingerprint contribution plot (FCP). Finalment la tesi presenta i compara els resultats de diagnòstic dels mètodes proposats en MSPC. Els resultats són comparats sobre les dades de dos processos utilitzant una nova estratègia basada en l'ús de la sensibilitat i especificitat mitjana. / Vidal Puig, S. (2016). FAULT DIAGNOSIS TOOLS IN MULTIVARIATE STATISTICAL PROCESS AND QUALITY CONTROL [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61292
|
4 |
Ambient-vibration-based Long-term SHM of Bridges Using Two-stage Output-only System Identification / 二段階出力のみのシステム同定による常時振動に基づく橋梁の長期モニタリングJiang, Wenjie 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24895号 / 工博第5175号 / 新制||工||1988(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 KIM Chul-Woo, 教授 杉浦 邦征, 教授 八木 知己 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
5 |
Behind the Scenes : Media Industry Stakeholders Collaborating Towards SustainabilityGuillen, Georgina, Katan, Jennifer, Xu, Bin January 2010 (has links)
The aim of this research is to discover ways that multi-stakeholder platforms for collaboration can be instrumental in the efforts of the media industry to achieve compliance with sustainability. Industries have gained awareness of their responsibilities towards environmental, social and economic welfare, and the media has a powerful role within society. The media industry's behavior is reflected both through its impacts of business operations as well as media products. The premise of this research suggests that an effective platform model fosters interpersonal, stimulating and energizing conversations amongst stakeholders in a neutral and friendly environment. In collaboration with various media stakeholders and showcasing an existing UK-based platform, the Media CSR Forum, and in investigating its structure and membership dynamics, it was possible to gain insight of common challenges for media companies. We identified the potential for platform models to help media companies plan strategically with the Framework for Strategic Sustainable Development. Strategic planning for sustainable development can help the media industry to face the challenge that their current contribution to un-sustainability represents and become a key player for sustainable societies.
|
6 |
The application of multivariate statistical analysis and optimization to batch processesYan, Lipeng January 2015 (has links)
Multivariate statistical process control (MSPC) techniques play an important role in industrial batch process monitoring and control. This research illustrates the capabilities and limitations of existing MSPC technologies, with a particular focus on partial least squares (PLS).In modern industry, batch processes often operate over relatively large spaces, with many chemical and physical systems displaying nonlinear performance. However, the linear PLS model cannot predict nonlinear systems, and hence non-linear extensions to PLS may be required. The nonlinear PLS model can be divided into Type I and Type II nonlinear PLS models. In the Type I Nonlinear PLS method, the observed variables are appended with nonlinear transformations. In contrast to the Type I nonlinear PLS method, the Type II nonlinear PLS method assumes a nonlinear relationship within the latent variable structure of the model. Type I and Type II nonlinear multi-way PLS (MPLS) models were applied to predict the endpoint value of the product in a benchmark simulation of a penicillin batch fermentation process. By analysing and comparing linear MPLS, and Type I and Type II nonlinear MPLS models, the advantages and limitations of these methods were identified and summarized. Due to the limitations of Type I and II nonlinear PLS models, in this study, Neural Network PLS (NNPLS) was proposed and applied to predict the final product quality in the batch process. The application of the NNPLS method is presented with comparison to the linear PLS method, and to the Type I and Type II nonlinear PLS methods. Multi-way NNPLS was found to produce the most accurate results, having the added advantage that no a-priori information regarding the order of the dynamics was required. The NNPLS model was also able to identify nonlinear system dynamics in the batch process. Finally, NNPLS was applied to build the controller and the NNPLS method was combined with the endpoint control algorithm. The proposed controller was able to be used to keep the endpoint value of penicillin and biomass concentration at a set-point.
|
7 |
PCA för detektering av avvikande händelser i en kraftvärmeprocess / PCA for outlier detection in a CHP plantKönigsson, Sofia January 2018 (has links)
Panna 6 på Högdalenverket i södra Stockholm (P6) med tillhörande ångturbin producerar kraftvärme genom förbränning av utsorterat returbränsle från industri och samhälle. För att minimera underhållskostnader och öka anläggningens tillgänglighet är det viktigt att fel och oönskat processbeteende kan upptäckas i ett tidigt skede. I detta syfte testas här en metod för detektering av avvikande händelser med hjälp av principalkomponentanalys (PCA) på produktionsprocessen för kraftvärme. En PCA-modell med reducerad dimension skapas utifrån processdata från en problemfri driftperiod och används som mall för inkommande data att jämföras med i ett kontrolldigram. Avvikelser ifrån modellen bör vara en indikation på att ett onormalt drifttillstånd har uppkommit och orsaker till avvikelsen analyseras. Som avvikande händelse testas två fall av tubläckage som uppstod i ett av tubpaketen för kylning av rökgaserna under 2014 och 2015. Resultatet visar att processavvikelser ifrån normallägesmodellerna tydligt syns i kontrolldiagrammen vid båda tubläckagen och avvikelserna kan härledas till variabler som är kopplade till tubläckage. Det finns potential för att tillämpa metoden för övervakning av processen, en svårighet ligger i att skapa en modell som representerar processen när den är stabil på grund av att det finns många varierande driftfall som anses stabila, detta kräver vidare arbete. Metoden kan redan användas som analysverktyg exempelvis vid misstanke om tubläckage. / Boiler 6 at the Högdalen facility in southern Stockholm (P6) combined with a a steam turbine produces Combined Heat and Power (CHP) through combustion of treated industry waste. In order to minimise maintenance costs and increase plant availability it is of importance to detect process faults and deviations at an early state. In this study a method for outlier detection using Principal Component Analysis (PCA) is applied on the CHP production process. A PCA model with reduced dimension is created using process data from a problem free period and is used as a template for new operating data to be compared with in a control chart. Deviations from the model should be an indication of the presence of abnormal conditions and the reasons for the deviations are analysed. Two cases of tube failure in 2014 and 2015 are used to study the deviations. The result shows that process deviations from the models can be detected in the control chart in both cases of tube failure and the variables known to be associated with tube failure contributes highly to the deviating behaviour. There is potential for applying this method for process control, a difficulty lies in creating a model that represents the stable process when there are big variances within what is considererd a stable process state. The method can be used for data analysis when suspecting a tube failure.
|
8 |
Estudio de la integración de procedimientos multivariantes para la regulación óptima y monitorización estadística de procesosBarceló Cerdá, Susana 04 May 2016 (has links)
[EN] Statistical Process Control (SPC) and the Automatic Process Control (APC) are two control philosophies have evolved independently until recently. The overall objective of both APC and SPC is to optimize the performance of processes, reducing the variability of the resulting characteristics around the desired values. The fundamentals of the two disciplines arise from the idea that the whole process has operation variations. These variations may affect, to a greater or lesser extent, the final product quality and the process productivity. The two methodologies conceptualize processes and control in different ways, they originated in different industrial sectors and have evolved independently, until the interest to integrate them in the control of industrial processes was deduced. It was warned that they could be complementary rather than conflicting methodologies as they were understood until then. The possibility of combining the advantages of both, integrating them into a new control paradigm was explored.
First, the problem of identifying and estimating a process model is considered. Controlled variables in this model are the main feature of product quality and a productivity variable. The latter is innovative since the productivity variables are measured, but they are not considered as controlled variables. For this, two methods of multivariate time series are used, the Box-Jenkins multiple transfer function in the parsimonious way and the impulse response function obtained by Partial Least Squares regression (Time Series-Partial Least Squares, TS-PLS). These two methods were compared taking into account different aspects such as the simplicity of the modeling process in the stages of identification, estimation and model validation, as well as the utility of graphical tools that provide both methodologies, the goodness of fit obtained, and the simplicity of the mathematical structure of the model.
The DMC (Dynamic Matrix Control) controller, an automatic control algorithm belonging to the family of MPC (Model Predictive Control) controllers, is derived from the estimated Box-Jenkins multiple transfer function that has been selected as the most suitable for this kind of processes. An optimal tuning method to maximize the controller performance, applying experimental design 2k-p, is presented.
Finally, an integrated control system MESPC (Multivariate Engineering Statistical Process Control) whose monitoring component has been implemented applying latent structures based multivariate statistical process control methods (Lsb-MSPC), has been developed. The monitoring module is designed to act as both process and DMC controller supervisor. To do this, we estimate a NOC-PCA model (Normal Operation Conditions Principal Component Analysis), which has as variables both process-related and quality-related variables, all derived from the automatic control system. From this model, and DModX graphics have been derived. We assessed the performance of MESPC system, subjecting it to simulated potential failures or special causes of variability. / [ES] El Control Estadístico de Procesos (Statistical Process Control, SPC) y el Control Automático de Procesos (Automatic Process Control, APC) son dos filosofías de control se han desarrollado hasta recientemente de forma independiente. El objetivo general tanto del SPC como del APC, es optimizar el funcionamiento de los procesos, reduciendo la variabilidad de las características resultantes en torno a los valores deseados. El fundamento de ambas disciplinas, parte de la idea de que todo proceso presenta variaciones en su funcionamiento. Estas variaciones pueden afectar en mayor o en menor medida a la calidad final del producto y a la productividad del proceso. Las dos metodologías conceptualizan los procesos y su control de diferentes formas, se originaron en diferentes sectores industriales y han evolucionado de forma independiente, hasta que se dedujo el interés de integrarlas en el control de los procesos industriales, ya que se advirtió que podían ser complementarias, antes que contrapuestas, como se entendían hasta entonces y se exploró la posibilidad de aunar las ventajas de ambas, integrándolas en un nuevo paradigma de control. Esta tesis se centra en el estudio de la integración de procedimientos multivariantes para la regulación óptima y la monitorización estadística de procesos, con el propósito de contribuir a la mejora de la calidad y de la productividad de los procesos. La metodología propuesta se ha aplicado con fines ilustrativos a un proceso MIMO de producción en continuo de Polietileno de Alta Densidad (PEAD).En primer lugar, se considera el problema de la identificación y posterior estimación de un modelo del proceso. Las variables controladas en este modelo han sido la principal característica de calidad del producto y una variable de productividad, esto último es innovador puesto que las variables de productividad se miden, pero no se consideran variables controladas. Para ello, se emplean dos metodologías de series temporales multivariantes, la obtención de la función de transferencia múltiple en forma parsimoniosa de Box-Jenkins y la obtención de la función de respuesta a impulsos mediante los modelos de regresión por mínimos cuadrados parciales (Time Series-Partial Least Squares, TS-PLS). Estas dos metodologías se han comparado teniendo en cuenta distintos aspectos como son la simplicidad del proceso de modelado en las etapas de identificación, estimación y validación del modelo, así como la utilidad de las herramientas gráficas que proporcionan ambas metodologías, la bondad de ajuste obtenida, y la simplicidad de la estructura matemática del modelo. A partir del modelo de función de transferencia múltiple estimado, elegido como el más adecuado para este tipo de procesos, se desarrolla el controlador DMC (Dynamic Matrix Control), un algoritmo de control automático que pertenece a la familia del Control Predictivo basado en Modelos (Model Predictive Control, MPC). Se presenta un método de sintonizado óptimo del controlador que permita maximizar su rendimiento, aplicando diseño de experimentos 2k-p.Finalmente, se ha desarrollado un sistema de control integrado MESPC (Multivariate Engineering Statistical Process Control), cuya componente de monitorización se ha implementado aplicando métodos de control estadístico multivariante de procesos basados en técnicas de proyección en estructuras latentes. Este módulo de monitorización se ha diseñado para que actúe como supervisor tanto del proceso como del controlador DMC. Para ello, se ha estimado un modelo NOC-PCA (Normal Operation Conditions Principal Component Analysis), en el que han intervenido tanto variables relacionadas con el proceso como con la calidad, todas derivadas de la componente del control automático. A partir de este modelo se han derivado los gráficos y DModX. Se ha evaluado el funcionamiento del sistema MESPC, sometiéndolo a fallos potenciales o causas especiales de variabiliabilidad. / [CA] El Control Estadístic de Processos (Statistical Process Control, SPC) i del Control Automàtic de Processos (Automatic Process Control, APC) son dues filosofies de control s'han desenvolupat fins a recentment de forma independent. L'objectiu general tant del SPC com del APC, és optimitzar el funcionament dels processos, reduint la variabilitat de les característiques resultants entorn dels valors desitjats. El fonament d'ambdues disciplines, part de la idea que tot procés presenta variacions en el seu funcionament. Aquestes variacions poden afectar en major o en menor mesura a la qualitat final del producte i a la productivitat del procés. Les dues metodologies conceptualitzen els processos i el seu control de diferents formes, es van originar en diferents sectors industrials i han evolucionat de forma independent, fins que es va deduir l'interès d'integrar-les en el control dels processos industrials, ja que es va advertir que podien ser complementàries, abans que contraposades, com s'entenien fins llavors i es va explorar la possibilitat de conjuminar els avantatges d'ambdues, integrant-les en un nou paradigma de control. Aquesta tesi se centra en l'estudi de la integració de procediments multivariants per a la regulació òptima i el monitoratge estadístic de processos amb el propòsit de contribuir a la millora de la qualitat i de la productivitat dels processos. La metodologia proposada s'ha aplicat amb finalitats il·lustratives a un procés MIMO de producció en continu de Polietilè d'Alta Densitat (PEAD). En primer lloc, es considera el problema de la identificació i posterior estimació d'un model del procés. Les variables controlades en aquest model han sigut la principal característica de qualitat del producte i una variable de productivitat, açò últim és innovador ja que les variables de productivitat es mesuren, però no es consideren variables controlades. Per a açò, s'utilitzen dues metodologies de sèries temporals multivariants, l'obtenció de la funció de transferència múltiple en forma parsimòniosa de Box-Jenkins i l'obtenció de la funció de resposta a impulsos mitjançant els models de regressió per mínims quadrats parcials (Times Series-Partial Least Squares, TS-PLS). Aquestes dues metodologies s'han comparat tenint en compte diferents aspectes com són la simplicitat del procés de modelatge en les etapes d'identificació, estimació i validació del model, així com la utilitat de les eines gràfiques que proporcionen ambdues metodologies, la bondat d'ajust obtinguda, i la simplicitat de l'estructura matemàtica del model. A partir del model de funció de transferència múltiple estimat, triat com el més adequat per a aquest tipus de processos, es desenvolupa el controlador DMC (Dynamic Matrix Control), un algorisme de control automàtic que pertany a la família del Control Predictiu basat en Models (Model Predictive Control, MPC). Es presenta un mètode de sintonitzat òptim del controlador que permeta maximitzar el seu rendiment, aplicant disseny d'experiments 2k-p. Finalment, s'ha desenvolupat un sistema de control integrat MESPC (Multivariate Engineering Statistical Process Control). Per a implementar la component de monitoratge d'aquest sistema integrat s'han usat mètodes de control estadístic multivariants de processos basats en tècniques de projecció en estructures latents (Latent structures based-Multivariate Statistical Process Control). Aquest mòdul de monitoratge s'ha dissenyat perquè actue com a supervisor tant del procés com del controlador DMC. Per a açò, s'ha estimat un model NOC-PCA (Normal Operation Conditions Principal Component Analysis), en el qual han intervingut variables relacionades tant amb el procés, com amb la qualitat, totes derivades de la component del control automàtic. A partir d'aquest model s'han derivat els gràfics i DModX. S'ha avaluat el funcionament del sistema MESPC, sotmetent-lo a fallades potencials o causes especials de / Barceló Cerdá, S. (2016). Estudio de la integración de procedimientos multivariantes para la regulación óptima y monitorización estadística de procesos [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63442
|
Page generated in 0.0551 seconds