• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 778
  • 454
  • 187
  • 78
  • 57
  • 28
  • 16
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • Tagged with
  • 1874
  • 407
  • 354
  • 284
  • 225
  • 186
  • 181
  • 145
  • 133
  • 130
  • 128
  • 119
  • 106
  • 104
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Mutations in Ribonucleic Acid Binding Protein Gene Cause Familial Dilated Cardiomyopathy

Brauch, Katharine M., Karst, Margaret L., Herron, Kathleen J., de Andrade, Mariza, Pellikka, Patricia A., Rodeheffer, Richard J., Michels, Virginia V., Olson, Timothy M. 01 September 2009 (has links)
Objectives: We sought to identify a novel gene for dilated cardiomyopathy (DCM). Background: DCM is a heritable, genetically heterogeneous disorder that remains idiopathic in the majority of patients. Familial cases provide an opportunity to discover unsuspected molecular bases of DCM, enabling pre-clinical risk detection. Methods: Two large families with autosomal-dominant DCM were studied. Genome-wide linkage analysis was used to identify a disease locus, followed by fine mapping and positional candidate gene sequencing. Mutation scanning was then performed in 278 unrelated subjects with idiopathic DCM, prospectively identified at the Mayo Clinic. Results: Overlapping loci for DCM were independently mapped to chromosome 10q25-q26. Deoxyribonucleic acid sequencing of affected individuals in each family revealed distinct heterozygous missense mutations in exon 9 of RBM20, encoding ribonucleic acid (RNA) binding motif protein 20. Comprehensive coding sequence analyses identified missense mutations clustered within this same exon in 6 additional DCM families. Mutations segregated with DCM (peak composite logarithm of the odds score >11.49), were absent in 480 control samples, and altered residues within a highly conserved arginine/serine (RS)-rich region. Expression of RBM20 messenger RNA was confirmed in human heart tissue. Conclusions: Our findings establish RBM20 as a DCM gene and reveal a mutation hotspot in the RS domain. RBM20 is preferentially expressed in the heart and encodes motifs prototypical of spliceosome proteins that regulate alternative pre-messenger RNA splicing, thus implicating a functionally distinct gene in human cardiomyopathy. RBM20 mutations are associated with young age at diagnosis, end-stage heart failure, and high mortality.
272

Flavonol Specific 3-O Glucosyltransferase (Cp3GT) Mutant S20G+T21S: Enzyme Structure and Function

Fobare, Hayden, Birchfield, Aaron, McIntosh, Cecilia 06 April 2022 (has links)
Flavonoids have multiple subclasses. A major subclass of flavonoids is flavonols. Flavonols are the most abundant subclass of flavonoids and are widely spread throughout nature. Flavonols are identified as having a hydroxyl group in the 3rd position of the C ring. The most prevalent modification to flavonols is glucosylation which adds glucose to an acceptor molecule. The flavonol specific 3-O glucosyltransferase (Cp3GT) enzyme from grapefruit (Citrus paradisi) is the topic of this research and specifically adds glucose to flavonols at the 3-OH position. The level of activity with Cp3GT and a flavonol varies depending on the flavonol structure. Since there is varying activity with Cp3GT, Cp3GT is an ideal model system for studying the structure/function relationship of Cp3GT site-directed mutants. Multiple mutants of Cp3GT were created by site directed mutagenesis. The mutant of study is S20G+T21S. As compared to the wild type Cp3GT, S20G+T21S has significantly higher activity with kaempferol, quercetin, dihydroquercetin, and naringenin. One of the more striking difference of S20G+T21S is its ability to add a glucose molecule to the 7-OH position of naringenin. Naringenin is a flavanone and indicates that S20G+T21S has a change in flavonoid class specificity as well as regiospecificity for the addition of glucose. The S20G+T21S mutant was first verified in E. coli via DNA sequencing. Next, S20G+T21S was transformed into Pichia pastoris by linearizing S20G+T21S DNA using Sac I, phenol chloroform purification, and electroporation. Transformation was verified by colony PCR and DNA sequencing. After verification, a time course analysis of expression conduction was completed. Optimal expression was concluded to be 24 hours and was verified by SDS-Page gel and western blot. In preparation for crystallization, S20G+T21S was purified using an IMAC infinity column. Purification was verified using a western blot, Coomassie blue, and silver stain. Progress on optimizing the crystallization conditions for S20G+T21S will be reported.
273

Evaluation of behavior in transgenic mouse models to understand human congenital pain conditions

Bullock, Daniel 11 July 2018 (has links)
BACKGROUND: Containing a brain for signal processing and decision making, and a peripheral component for sensation and response, the nervous system provides higher organisms a powerful method of interacting with their environment. The specific neurons involved in pain sensation are known as nociceptors and are the source of normal nociceptive pain signaling to prompt appropriate responses. Though acute hypersensitization can be advantageous by encouraging an organism to allow an injured area to heal, chronic pain conditions can be pathological and can markedly reduce quality of life. While a variety of genes have been associated with congenital pain conditions, two rare cases examined in this study have not had their mutated genes identified. Potassium voltage-gated channel subfamily H member 8, or KCNH8, is involved in regulating action potential production and propagation, and has not been linked with pain processing of any kind to date. Here, a male patient evaluated at Boston Children’s Hospital contains a novel single-base KCNH8 mutation and possesses an extremely low sensitivity to cold temperatures and mechanical pain, but a higher sensitivity to warmer temperatures. A separate protein, intersectin-2, or ITSN2, normally functions in clathrin-mediated endocytosis and exocytosis. A second patient at Boston Children’s Hospital expresses a previously-unseen point mutation in ITSN2 and experiences erythromelalgia, characterized by episodes of intense pain and red, swollen limbs during ambient warm temperatures. Through the use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing, this study will produce these specific genetic mutations in mouse lines to explore their effects on mammalian behavior. OBJECTIVES: This project employs two transgenic mouse models to study the behavioral phenotypes associated with rare potentially damaging mutations in KCNH8 and ITSN2 exhibited in the human patients. Through these experiments, a greater understanding of neural pain signaling and sensitivity changes can occur. METHODS: The differences in temperature preference of KCNH8 and ITSN2 mutant mice compared to wild type mice lacking these mutations was studied using thermal plates under cold and warm conditions. Direct application of acetone and von Frey filaments to mouse paws was used to study cold and mechanical sensitivity. Further testing of stamina, anxiety, coordination, and strength were also evaluated. RESULTS: A marked decrease in sensitivity to von Frey stimulation (p<0.01) and acetone administration (p<0.05) was observed in KCNH8 mutant mice. Thermal preference testing demonstrated a decreased preference for warmer temperatures as compared to wild type mice. In addition, anxiety levels were also observed to be slightly higher in these mutant KCNH8 mice (p<0.05). The mutant ITSN2 mice spent less time at cooler temperatures, though surprisingly they significantly preferred warmer conditions as compared to their wild type littermates. A full and partial reversal of these temperature preferences was demonstrated in cold and heat thermal conditions respectively after intraperitoneal gabapentin injection, which normalized the mice toward wild type behavior. CONCLUSIONS: Data from the KCNH8 mutant mouse model indicates an aversion to warmer temperatures and a decreased ability to detect cold or mechanical pressure, much like the human patient. The mutant ITSN2 mice were less likely to spend time at cooler temperatures, indicating heightened sensory sensitivity, but their preference for warmer temperatures suggests a possible desensitization of the affected nociceptors. These results often mirror the patient’s phenotype, but the preference for ambient warmer environments appears opposite to the patient. As the ITSN2 mice feel discomfort at cooler temperatures, a proposed desensitization at warmer temperatures would result in a more comfortable environment and could explain the observed preference. The trends toward normal neural firing rates achieved through gabapentin injection suggest that the aberrant responses in mutant ITSN2 mice is due to altered sensitization, but additional examination under these conditions with a larger group of mice is necessary to further unravel these signaling pathways. However, these extremely encouraging data introduce two new molecular targets for acute pain control.
274

Evolutionary Dynamics in Molecular Populations of Ligase Ribozymes

Diaz Arenas, Carolina 01 January 2010 (has links)
The emergence of life depended on the ability of the first biopolymer populations to thrive and approach larger population sizes and longer sequences. The evolution of these populations likely occurred under circumstances under which Muller's Ratchet in synergism with random drift could have caused large genetic deterioration of the biopolymers. This deterioration can drive the populations to extinction unless there is a mechanism to counteract it. The effect of the mutation rate and the effective population size on the time to extinction was tested on clonal populations of B16-19 ligase ribozymes, evolved with the continuous evolution in vitro system. Populations of 100, 300, 600 and/or 3000 molecules were evolved with and without the addition of Mn(II). The times to extinction for populations evolved without Mn(II) were found to be directly related to the effective size of the population. The small populations approached extinction at an average of 24.3 cycles; while the large populations did so at an average of 44.5 cycles. Genotypic characterization of the populations showed the presence of deleterious mutations in the small populations, which are the likely cause of their genetic deterioration and extinction via mutational meltdown. These deleterious mutations were not observed in the large populations; in contrast an advantageous mutant was present. Populations of 100 and 3000 molecules were evolved with Mn(II). None of the populations showed signs of genetic deterioration nor did they become extinct. Genotypic characterization of the 100-molecule population indicated the presence of a cloud of mutants closely genetically-related, forming a "quasispecies" structure.. The close connectedness of the mutants facilitates the recovery of one from another in the event of being removed from the population by random genetic drift. Thus, quasispecies shift the target of selection from individual to group. The total fitness of the molecules was measured by identifying the fitness component of the system that effect the ligase replication cycles: ligation, reverse transcription and transcription. It was found that the strength of the three components of fitness varied and that each one has a differential effect in the total absolute fitness of the ligases.
275

Association of ear and eye findings

Mustafa, Asel 10 February 2022 (has links)
The ear and eye are both special sensory organs that are derived from the neural ectoderm and develop closely together during the fourth week of embryogenesis. The structure of these organs is related to their functions and therefore each of the components must be able to effectively operate in order to function efficiently. The role of genetic and environmental factors that affect the development of both the ear and eye have been identified and studied, which allows researchers to better understand the association of the ear and eye. Currently, there are syndromes (such as Goldenhar and CHARGE) that are known to affect both systems concurrently. However, there is a possibility that there are more undiscovered syndromes that also affect the ear and eye simultaneously, where there are still unexplored associations between various eye and ear disorders. Identifying and understanding these syndromes allows clinicians to better diagnose and treat patients who originally present with one or the other disorder and have not been further tested. The ear and eye have also been associated with the central nervous system, where disorders in the systems might indicate neurodevelopment or neurological issues because of abnormalities in the development of their common origin.
276

Molecular mutations and polymorphisms associated with hereditary haemolytic anaemias in local populations

Beeton, Lesley Dawn 15 July 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, 17 May 1994. / Two black South African subjects presenting with hereditary elliptocytosis were investigated and the defect defined as Spol/74, a previously described spectrin variant leading to defective heterodimer self-association and instability of the erythrocyte membrane. [Abbreviated Abstract. Open document to view full version]
277

Characterization of the CAN1 gene and its product in S. cerevisiae

Ahmad, Margaret January 1987 (has links)
No description available.
278

Recombination and mutation analysis of lethals at the dumpy locus in Drosophila melanogaster

Montgomerie, David William. January 1974 (has links)
No description available.
279

Sulfite-requiring mutants of Aspergillus nidulans.

Gravel, Roy André January 1969 (has links)
No description available.
280

Mutations in protein kinase A catalytic subunit as a cause of adrenal Cushing's syndrome: mechanisms and functional consequences / Mutationen in der katalytischen Untereinheit von Proteinkinase A als Ursache des adrenalen Cushing Syndroms: Mechanismen und funktionelle Konsequenzen

Bathon, Kerstin January 2019 (has links) (PDF)
Protein kinase A (PKA) is the main effector of cyclic-adenosine monophosphate (cAMP) and plays an important role in steroidogenesis and proliferation of adrenal cells. In a previous study we found two mutations (L206R, 199_200insW) in the main catalytic subunit of protein kinase A (PKA C) to be responsible for cortisol-producing adrenocortical adenomas (CPAs). These mutations interfere with the formation of a stable holoenzyme, thus causing constitutive PKA activation. More recently, we identified additional mutations affecting PKA C in CPAs associated with overt Cushing syndrome: S213R+insIILR, 200_201insV, W197R, d244 248+E249Q, E32V. This study reports a functional characterization of those PKA Cmutations linked to CPAs of Cushing’s patients. All analyzed mutations except for E32V showed a reduced interaction with at least one tested regulatory (R) subunit. Interestingly the results of the activity differed among the mutants and between the assays employed. For three mutants (L206R, 199_200insW, S213R+insIILR), the results showed enhanced translocation to the nucleus. This was also observed in CRISPR/Cas9 generated PRKACA L206R mutated HEK293T cells. The enhanced nuclear translocation of this mutants could be due to the lack of R subunit binding, but also other mechanisms could be at play. Additionally, I used an algorithm, which predicted an effect of the mutation on substrate specificity for four mutants (L206R, 199_200insW, 200_201insV, d244 248+E249Q). This was proven using phosphoproteomics for three mutants (L206R, 200_201insV, d244 248+E249Q). In PRKACA L206R mutated CPAs this change in substrate specificity also caused hyperphosphorylation of H1.4 on serine 36, which has been reported to be implicated in mitosis. Due to these observations, I hypothesized, that there are several mechanisms of action of PRKACA mutations leading to increased cortisol secretion and cell proliferation in adrenal cells: interference with the formation of a stable holoenzyme, altered subcellular localization and a change in substrate specificity. My data indicate that some PKA C mutants might act via just one, others by a combination of these mechanisms. Altogether, these findings indicate that several mechanisms contribute to the development of CPAs caused by PRKACA mutations. Moreover, these findings provide a highly illustrative example of how alterations in a protein kinase can cause a human disease. / Proteinkinase A (PKA) ist der Haupteffektor von cyclischem Adenosinmonophosphat (cAMP) und spielt eine wichtige Rolle bei der Synthese von Steroiden und der Proliferation von Nebennierenzellen. In einer vorangegangenen Studie fanden wir zwei Mutationen (L206R, 199_200insW) der wichtigsten katalytischen Untereinheit von PKA (PKA C), die für Kortisol sekretierende Nebennierenrindenadenome (CPAs) verantwortlich sind. Diese Mutationen stören die Bildung eines stabilen Holoenzyms und verursachen somit eine dauerhafte PKA Aktivierung. Vor Kurzem fanden wir weitere Mutationen der PKA C in CPAs von Patienten mit Cushing Syndrom: S213R+insIILR, 200_201insV, W197R, d244 248+E249Q, E32V. In dieser Arbeit wurde eine funktionelle Charakterisierung dieser PKA C Mutanten, die im Zusammenhang mit CPAs von Cushing Patienten stehen, durchgeführt. Alle PKA Mutanten, mit Ausnahme von E32V, zeigten eine reduzierte Interaktion mit mindestens einer getesteten regulatorischen (R) Untereinheit. Interessanterweise hatten die Mutanten unterschiedliche Effekte auf die Aktivität der Kinase. Zusätzlich hatte die Analysemethode ebenfalls Einfluss auf die Aktivität der Mutanten. Für drei Mutanten (L206R, 199_200insW, S213R+insIILR) zeigten die Ergebnisse eine verstärkte Translokation der C Untereinheit in den Zellkern. Dies wurde auch in HEK293T Zellen bestätigt, in deren PRKACA Gen mittels CRISPR/Cas9 die L206R Mutation eingeführt wurde. Diese erhöhte Translokation kann durch die fehlende Bindung zur R Untereinheit erklärt werden, aber auch andere Mechanismen könnten eine Rolle spielen. Außerdem zeigten die Ergebnisse eine Veränderung der Substratspezifität, die für vier Mutanten durch einen Algorithmus vorausberechnet wurde (L206R, 199_200insW, 200_201insV, d244-248+E249Q). Für drei dieser Mutanten (L206R, 200_201insV, d244 248+E249Q) wurde dieses Ergebnis mittels Phosphoproteomics nachgewiesen. Diese Änderung der Substratspezifität verursacht in PRKACA L206R mutierten CPAs auch eine Hyperphosphorylierung von H1.4 an Serin 36, welches eine wichtige Rolle in der Zellteilung spielt. Meine Ergebnisse weisen darauf hin, dass es mehrere Wirkungsmechanismen von PRKACA Mutationen gibt, die zu einer erhöhten Sekretion von Kortisol und Zellproliferation in Nebennierenzellen führen: Störung der Bildung eines stabilen Holoenzyms, Änderung der subzellulären Lokalisation und eine Veränderung der Substratspezifität. Meine Ergebnisse weisen darauf hin, dass einige PKA C-Mutanten durch nur einen, andere durch eine Kombination dieser Mechanismen wirken. Insgesamt zeigen diese Ergebnisse, dass PRKACA Mutationen durch mehrere Mechanismen zur Entwicklung von CPAs beitragen. Darüber hinaus liefern diese Ergebnisse ein anschauliches Beispiel dafür, wie Mutationen in einer Proteinkinase eine menschliche Krankheit verursachen können.

Page generated in 0.0393 seconds