Spelling suggestions: "subject:"machining."" "subject:"amachining.""
421 |
Development Of Cubic Boron Nitride (cbn) Coating Process For Cutting ToolsCesur, Halil 01 June 2009 (has links) (PDF)
In today& / #8217 / s market conditions, higher tool life and durable cutting tools which can stand high cutting speeds are required in chip removal process. In order to improve the performance of cutting tools, coatings are employed extensively. Cubic boron nitride (cBN) is a new kind of coating material for cutting tools due to its outstanding properties and testing of cBN as a hard coating for machining have been increasing in recent years. However, there are some challenges such as compressive residual stress, poor adhesion and limiting coating thickness during the deposition of cBN on substrates.
In this study, cubic boron nitride (cBN) coatings are formed on cutting tools from hexagonal boron nitride (hBN) target plates. For this purpose, a physical vapor deposition (PVD) system is utilized. PVD system works on magnetron sputtering technique in which material transfer takes place from target plate to substrate surface. Firstly, cBN coatings are deposited on steel
and silicon wafer substrates for measurements and analyses. Compositional, structural and mechanical measurements and analysis are performed for the characterization of coatings. Next, several types of cutting tools are coated by cBN and the effects of cBN coatings on cutting performance are investigated.
Finally, it can be said that cubic boron nitride coatings are successfully formed on substrates and the improvement of wear resistance and machining performance of cBN coated cutting tools are observed.
|
422 |
An Advanced Machining Process Simulator For Industrial ApplicationsYegin, Emre 01 December 2010 (has links) (PDF)
Turning and milling are the main manufacturing techniques in industry. A great deal of time and money is spent for machining operations. Although most of the time, the tool path of a CNC machine tool is generated by a Computer Aided
Manufacturing (CAM) software package, to be sure that the result of the machining operation will be as required, it is necessary to use a simulation software. There are various machining simulation software packages available in the market. However, they are not only expensive, but also specialized for only one of the before mentioned machining techniques. Most of the companies in the industry are small
or medium scale ones and, it is not so easy for them to afford a specialized simulation software for that purpose.
In this thesis, it is aimed to develop a software package, which will be used to simulate advanced industrial machining processes, including turning and milling. Dexelmodeling, which is generated by ray casting, and sweep plane algorithm
withpolygon clipping technique are used forvisualization. For polygon clipping technique, outer surfaces of the resultant workpiece are generated from planar contours. The software is developed in C# programming language and DirectX
libraries are utilizedfor visualization purposes. With the aid of this software, it is also aimed to visually confirm the validity of both mill and lathe NC-code, by representing highly accurate 3D displayed results of these simulations.
|
423 |
Forming Ceramic Turbine Rotor by Green MachiningHuang, Shao-Yen 12 September 2007 (has links)
Ceramics can highly withstand the environments of high temperature and serious erosion, it completely substitutes for alloys which reach their specific limitations. Turbine rotor operates in the compressed stage with temperature over thousand Celsius degrees; it must rely on excellent properties of ceramics to elevate the durability and lifetime. To manufacture complex ceramic component before, industry usually uses near net shaping or rapid prototyping (RP) processes.
A manufacturing process based on machining green ceramic turbine component is presented here. Initially, formulating a series of machining experiments for green ceramics to verify the idea of thesis, and analyzing the probability of Al2O3 ceramic as a turbine material. Firstly, it needs to check the machinability of green ceramic by face milling. Secondly, point milling the normal plate of green compact and the plate with analogical blade geometry to find a set of usable machining parameters (such as
revolution speed, feed rate, step over and cutting depth); meanwhile, addressing machining amendment by observing the final conditions of specific geometric characteristics on workpiece. Finally, try to machining green ceramic turbine successfully applying the above parameters.
|
424 |
Fabrication of pyramid-shaped microlens arrayChen, Jia-lin 12 February 2009 (has links)
Brightness enhancement film (BEF) has been manufactured in foreign factories for backlight module of liquid crystal display (LCD), then it only have some interior factories to put in exploitation. Because of this, the study presents a precision machining and new step-imprint hot embossing process to fabricate pyramid-shaped microlens array. First, a tungsten (W) steel material is manufactured by precision machining. The dimension of a pyramid-shaped microlens on the W steel are about 300 £gm in the base line of three side, 222 £gm in bevel edge of three side, 139 £gm in height of bottom to top, 180 £gm in pitch of the left and right sides between two pyramid-shaped microlens tips, and 85 degree in top angle of three bevel. The W steel mold is used as the first mold. Second, the pyramid peaks of first mold pattern are transferred on bulk metallic glass (BMG) using step-imprint hot embossing method with position adjustable mechanism to form a smaller concave pyramid-shaped microlens array, it can avoid arc radius of cutting tools which is used as the second mold. Another the pyramid peaks are transferred on PMMA (Polymethylmethacrylate) for concave pyramid-shaped microlens array of optical film in the hot embossing system. Finally, the second mold is fabricated to emboss convex pyramid-shaped microlens array of optical film on PMMA. The foregoing method is provided for backlight module of optical films process.
|
425 |
Laser assisted micro milling of hard materialsKumar, Mukund 08 July 2011 (has links)
This thesis presents an investigation of novel laser assisted micromachining processes that addresses the limitations of micromachining of hard-to-machine materials. Two different laser assisted approaches are used to machine hard metals and high strength ceramics. For hard metals, the basic approach involves localized thermal softening of the workpiece material by focusing a solid-state continuous wave near infra-red laser beam in front of the micro milling tool (end mills of 0.1 to 0.5 mm diameter). By suitably controlling the laser power, spot size and scan speed, it is possible to produce a sufficiently large reduction in the flow strength of the work material and consequently the cutting forces and tool deflections. A force model is developed to predict the cutting forces in Laser Assisted Micro Milling (LAMM) of hard metals. For high strength ceramics, the approach involves use of a two step process. In the first step, thermal cracks are generated in a confined volume by the steep thermal gradients generated by laser irradiation of the workpiece. In the second step, the weakened region is removed by a micro grinding tool. The characterization and modeling of the process serve as bases for users of the two approaches to select optimal process parameters.
|
426 |
Machining of Some Difficult-to-Cut Materials with Rotary Cutting ToolsStjernstoft, Tero January 2004 (has links)
<p>Automobile and aero industries have an increasing interestin materials with improved mechanical properties. However, manyof these new materials are classified as difficult-to-cut withconventional tools. It is obvious that tools, cutting processesand cutting models has to be devel-oped parallel to materialsscience. In this thesis rotary cutting tools are tested as analternative toexpensive diamond or cubic bore nitridetools.</p><p>Metal matrix composites mostly consist of a light metalalloy (such as aluminium or titanium) reinforced with hard andabrasive ceramic parti-cles or fibres. On machining, thereinforcement results in a high rate of tool wear. This is themain problem for the machining of MMCs. Many factors affect thelife length of a tool, i.e. matrix alloy, type, size andfraction of the reinforcement, heat treatment, cuttingconditions and tool properties.</p><p>In tests, the Al-SiC MMC formed a deformation layer duringmilling, probably affected by lack of cooling. The dominatingfactor for tool life was the cutting speed. Water jet or CO2cooling of turning did not provide dramatic increase in toollife. With PCD, cutting speeds up to 2000 m/min were usedwithout machining problems and BUE formation. Tool flank wearwas abrasive and crater wear created an "orange-peel type" wearsurface. PCD inserts did not show the typical increase in flankwear rate at the end of its lifetime.</p><p>The use of self-propelled rotary tools seems to be apromising way to increase tool life. No BUE was formed on therotary tool at high cutting data. The measurements indicatethat the rotary tool creates twice as good surface as PCDtools. The longest tool life was gained with an inclinationangle of 10 degrees. Tool costs per component will beapproximately the same, but rotary cutting tool allows higherfeeds and therefore a higher production rate and thus a lowerproduction cost.</p><p>The rotary cutting operation might have a potential toincrease productiv-ity in bar peeling. The lack of BUE withrotary cutting gives hope on higher tool life. The test resultsshow that tool wear was 27% lower with rotary cutting tools.Increase of cutting speed from 22 to 44 m/min did not affectcutting forces. This indicates that the cutting speed canincrease without significant change in tool wear rate.</p><p>Issues related to rotary cutting like cutting models,cutting processes, standards, tools and models have beendiscussed. A tool wear model with kinetic energy has beendiscussed.</p><p><b>KEYWORDS:</b>Difficult-to-Cut material, Metal MatrixComposite (MMC), Machining, Machinability, Rotary Cutting Tool,Acoustic Emission</p>
|
427 |
Sensor based fixture design and verificationPurushothaman, Radhakrishnan. January 2003 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: error proofing; foolproofing; poka-yoke; free-form surfaces; fixture. Includes bibliographical references (p. 76-78).
|
428 |
Modeling chip formation in orthogonal metal cutting using finite element analysisWince, Jaton Nakia. January 2002 (has links)
Thesis (M.S.)--Mississippi State University. Department of Mechanical Engineering. / Title from title screen. Includes bibliographical references.
|
429 |
Laser processing of Silica based glassHolmberg, Patrik January 2015 (has links)
The main topic of this thesis work is photosensitivity and photo-structuring of optical fibers and bulk glass. Although research in the field of photosensitivity in glass and optical fibers has been ongoing for more than three decades, the underlying mechanisms are still not well understood. The objective was to gain a better understanding of the photo-response by studying photosensitivity from a thermodynamic perspective, as opposed to established research focusing on point defects and structural changes, and strain and stress in optical fibers. Optical fibers was mainly used for experimental studies for two reasons; first, photosensitivity in fibers is more pronounced and more elusive compared to its bulk counterpart, and secondly, fibers provide a simplified structure to study as they experimentally can be seen as one-dimensional.Initially, ablation experiments on bulk glass were performed using picosecond infrared pulses. With a design cross section of 40x40 μm, straight channels were fabricated on the top (facing incident light) and bottom side of the sample and the resulting geometries were analyzed. The results show a higher sensitivity to experimental parameters for bottom side ablation which was ascribed to material incubation effects. Moreover, on the top side, the resulting geometry has a V-shape, independent of experimental parameters, related to the numerical aperture of the focusing lens, which was ascribed to shadowing effects.After this work, the focus shifted towards optical fibers, UV-induced fiber Bragg gratings (FBGs) and thermal processing with conventional oven and with a CO2 laser as a source of radiant heat.First, a system for CO2 laser heating of optical fibers was constructed. For measuring the temperature of the processed fibers, a special type of FBG with high temperature stability, referred to as "Chemical Composition Grating" (CCG) was used. A thorough characterization and temperature calibration was performed and the results show the temperature dynamics with a temporal resolution of less than one millisecond. The temperature profile of the fiber and the laser beam intensity profile could be measured with a spatial resolution limited by the grating length and diameter of the fiber. Temperatures as high as ~ 1750 °C could be measured with corresponding heating and cooling rates of 10.500 K/s and 6.500 K/s.Subsequently, a thorough investigation of annealing and thermal regeneration of FBGs in standard telecommunication fibers was performed. The results show that thermal grating regeneration involves several mechanisms. For strong regeneration, an optimum annealing temperature near 900 C was found. Two different activation energies could be extracted from an Arrhenius of index modulation and Braggv iwavelength, having a crossing point also around 900 °C, indication a balance of two opposing mechanisms.Finally, the thermal dynamics and spectral evolution during formation of long period fiber gratings (LPGs) were investigated. The gratings were fabricated using the CO2 laser system by periodically grooving the fibers by thermal ablation. Transmission losses were reduced by carefully selecting the proper processing conditions. These parameters were identified by mapping groove depth and transmission loss to laser intensity and exposure time. / Huvudtemana i denna avhandling är fotokänslighet och fotostrukturering av optiska fibrer och bulk glas. Trots att forskning inom fotokänslighet i glas och optiska fibrer har pågått under mer än tre decennier är de bakomliggande mekanismerna ännu inte klarlagda. Syftet var att få en bättre förståelse för fotoresponsen genom att studera fotokäsligheten ur ett termodynamiskt perspektiv, i motsats till etablerad forskning med fokus på punktdefekter och strukturförändringar, samt mekaniska spännings effekter i optiska fibrer. Optiska fibrer användes för flertalet av de experimentella studierna av två skäl; för det första är fotokänsligheten i fibrer större och dessutom vet man mindre om bakomliggande mekanismer jämfört med motsvarande bulk glas, och för det andra kan fibrer vara enklare att studera eftersom de experimentellt kan ses som en endimensionell struktur.Inledningsvis utfördes ablaherings experiment på bulk glas med en infraröd laser med pikosekund pulser. Raka kanaler med ett designtvärsnitt på 40x40 μm tillverkades på ovansidan (mot infallande ljus) och bottensidan av provet och de resulterande geometrierna analyserades. Resultaten visar en högre känslighet för variationer i experimentella parametrar vid ablahering på undersidan vilket kan förklaras av inkubations effekter i materialet. Dessutom är den resulterande geometrin på ovansidan V-formad, oavsett experimentella parametrar, vilket kunde relateras till den numeriska aperturen hos den fokuserande linsen, vilket förklaras av skuggningseffekter.Efter detta arbete flyttades fokus mot optiska fibrer, UV inducerade fiber Bragg gitter (FBG), och termisk bearbetning med konventionell ugn samt även med en CO2-laser som källa för strålningsvärme.Först konstruerades ett system för CO2-laservärmning av fibrer. För mätning av temperaturen hos bearbetade fibrer användes en speciell sorts FBG med hög temperaturstabilitet, kallade ”Chemical Composition Gratings” (CCG). En grundlig karaktärisering och temperaturkalibrering utfördes och temperaturdynamiken mättes med en tidsupplösning på under en millisekund. Temperaturprofilen i fibern, och laserns strålprofil, kunde mätas med en spatiell upplösning begränsad av gitterlängden och fiberns diameter. Temperaturer upp till ~1750 °C, vilket är högre än mjukpunktstemperaturen, kunde mätas med korresponderande uppvärmnings- och avsvalningshastighet på 10.500 K/s och 6.500 K/s.Därefter gjordes en omfattande undersökning av värmebearbetning och termisk regenerering av FBG:er i telekomfiber. Resultaten visar att termisk gitter-regenerering aktiveras av flera olika mekanismer. Värmebearbetning vid en temperatur omkring 900 °C resulterade i starka gitter efter en regenerering vid en temperatur på 1100 °C. Två olika aktiveringsenergier kunde extraheras från en Arrhenius plot avseende brytningsindexmodulation och Braggvåglängd, med en skärningspunkt tillika runt 900 °C, vilket indikerar en avvägning mellan två motverkande mekanismer vid denna temperatur.Slutligen undersöktes temperaturdynamiken och de spektrala egenskaperna under tillverkning av långperiodiga fibergitter (LPG). Gittren tillverkades med CO2-vi iilasersystemet genom att skapa en periodisk urgröpning medelst termisk ablahering. Transmissionsförluster kunde reduceras med noggrant valda processparametrar. Dessa parametrar identifierades genom mätningar av ablaherat djup och transmissionsförlust som funktion av laserintensitet och exponeringstid. / <p>QC 20150924</p>
|
430 |
Engineered Surface Properties of Porous Tungsten from Cryogenic MachiningSchoop, Julius M. 01 January 2015 (has links)
Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness (hc) effects based on cutting force, temperature and surface roughness data is developed and used to study the deformation mechanisms of porous tungsten under different machining conditions. It is found that when hmax = hc, ductile mode machining of otherwise highly brittle porous tungsten is possible. The value of hc is approximately the same as the average ligament size of the 80% density porous tungsten workpiece.
|
Page generated in 0.0803 seconds