Spelling suggestions: "subject:"cagnetic nanostructure"" "subject:"cagnetic manostructure""
1 |
Nanoestrutura magnética TiO2: CoFe2O4 aplicada como fotocatalisador na degradação do Diuron padrão por fotocatálise.OLIVEIRA, Paloma Lima de. 02 May 2018 (has links)
Submitted by Lucienne Costa (lucienneferreira@ufcg.edu.br) on 2018-05-02T23:02:56Z
No. of bitstreams: 1
PALOMA LIMA DE OLIVEIRA – DISSERTAÇÃO (PPGEQ) 2017.pdf: 2052604 bytes, checksum: eb8835fec6a57dfd944520382ff5fd82 (MD5) / Made available in DSpace on 2018-05-02T23:02:56Z (GMT). No. of bitstreams: 1
PALOMA LIMA DE OLIVEIRA – DISSERTAÇÃO (PPGEQ) 2017.pdf: 2052604 bytes, checksum: eb8835fec6a57dfd944520382ff5fd82 (MD5)
Previous issue date: 2017-04 / Um método considerado eficiente para degradação de moléculas orgânicas recalcitrantes, como é o caso do agrotóxico diuron, é o processo de fotocatálise heterogênea (FH) utilizando TiO2. O emprego do TiO2 no processo fotocatálitico é geralmente na forma de pó constituído de partículas nanométricas, o que dificulta a sua recuperação e reutilização. Uma alternativa que permite recuperar o nanocatalisador do meio reacional por separação magnética é a síntese do mesmo associado a uma fase com boa propriedade magnética (CoFe2O4). Assim o presente trabalho teve como objetivo sintetizar nanoestruturas magnéticas, xTiO2:yCoFe2O4 nas proporções mássicas x:y 90:10; 70:30 e 50:50, para serem utilizadas como catalisadores no processo de degradação e mineralização do diuron padrão em solução aquosa por fotocatálise heterogênea. Para isso foram sintetizadas as amostras CoFe2O4 pelo método de combustão e TiO2 e xTiO2:yCoFe2O4 pelo método Pechini, que foram submetidas as caracterizações de difração de raios X com refinamento Rietvield, composição química por fluorescência de raios X e análise textural. A atividade fotocatalítica dos nanomateriais foi avaliada na fotodegradação e mineralização do diuron padrão por meio da quantificação da concentração final de diuron e do carbono orgânico total (COT). Os efeitos do pH e da concentração de catalisador foram estimadas por meio de um planejamento fatorial 22. As nanoestruturas magnéticas permitiram a separação do meio reacional por um campo magnético. Todos os nanomateriais sintetizados promoveram 100% de degradação do diuron. As maiores remoções de COT para os catalisadores magnéticos foram obtida com pH 3 e 0,5 mg/mL de catalisador e para o TiO2 foi com pH 5 e 0,3 mg/mL de catalisador. / A method considered efficient for the recalcitrant organic molecules degradation, such as diuron agrochemical, is the heterogeneous photocatalysis (FH) process using TiO2. The TiO2 in photocatalytic process is generally used in powder form consisting of nanometric particles, which makes difficult its recovery and reuse. An alternative that allows recovering the nanocatalyst from the reaction medium by magnetic separation is the synthesis of the same compound associated to a good magnetic property phase (CoFe2O4). Thus the present work had as objective to synthesize magnetic nanostructures, xTiO2:yCoFe2O4 in the mass proportions of x:y 90:10; 70:30 and 50:50 to be used as catalysts in the degradation and mineralization process of the standard diuron in aqueous solution by heterogeneous photocatalysis. In order to accomplish it, CoFe2O4 samples were synthesized by the combustion method and TiO2 and xTiO2: yCoFe2O4 were synthesized by the Pechini method, which were subjected to X-ray diffraction characterization with Rietvield refinement, chemical composition by X-ray fluorescence and textural analysis. The photocatalytic nanomaterials activity was evaluated in the photodegradation and mineralization of the standard diuron by quantifying the final diuron concentration and total organic carbon (TOC). The pH effects and the catalyst concentration were estimated through a factorial design. The magnetic nanostructures allowed the reaction medium separation by a magnetic field. All synthesized nanomaterials promoted 100% diuron degradation. The highest TOC removals for the magnetic catalysts were obtained with pH 3 and 0.5 mg/mL of catalyst and for TiO2 it was with pH 5 and 0.3 mg/mL of catalyst.
|
2 |
Charakterizace magnetických nanostruktur pomocí mikroskopie magnetických sil / Characterization of magnetic nanostructures by magnetic force microscopyStaňo, Michal January 2014 (has links)
The thesis deals with magnetic force microscopy of soft magnetic nanostructures, mainly NiFe nanowires and thin-film elements such as discs. The thesis covers almost all aspects related to this technique - i.e. from preparation of magnetic probes and magnetic nanowires, through the measurement itself to micromagnetic simulations of the investigated samples. We observed the cores of magnetic vortices, tiny objects, both with commercial and our home-coated probes. Even domain walls in nanowires 50 nm in diameter were captured with this technique. We prepared functional probes with various magnetic coatings: hard magnetic Co, CoCr and soft NiFe. Hard probes give better signal, whereas the soft ones are more suitable for the measurement of soft magnetic structures as they do not influence significantly the imaged sample. Our probes are at least comparable with the standard commercial probes. The simulations are in most cases in a good agreement with the measurement and the theory. Further, we present our preliminary results of the probe-sample interaction modelling, which can be exploited for the simulation of magnetic force microscopy image even in the case of probe induced perturbations of the sample.
|
3 |
Spin Transfer Torque-induziertes Schalten von Nanomagneten in lateraler Geometrie bei Raumtemperatur / Spin transfer torque induced switching of nano magnets in lateral spin valve geometry at roomtemperatureBuhl, Matthias 14 April 2014 (has links) (PDF)
Das Schalten und das Auslesen der magnetischen Ausrichtung einzelner winziger magnetischer Informationsspeicher müssen zu wirklich nanoskopischer Dimension entwickelt werden, um mit der Miniaturisierung von modernen, nanoelektronischen Bauteilen Schritt zu halten. Daher sind neue Konzepte, den magnetischen Zustand von Nanostrukturen elektronisch gezielt zu beeinflussen, derzeitig im Mittelpunkt wissenschaftlicher Untersuchungen.
Diese Arbeit befasst sich mit dem zuverlässigen Einstellen der Magnetisierung eines rein horizontal kontaktierten, nanoskopischen Magneten, in zwei stabile Zustände. Ein spinpolarisierter Strom wird bei Raumtemperatur in eine Leiterbahn unterhalb des magnetischen Nanopillars injiziert. Spindiffusion durch den Kontakt zwischen der Leiterbahn (Cu) und dem Pillar (CoFe) ruft eine Spin-Akkumulation im Nanopillar hervor, der durch den Spin Transfer Torque-Effekt (STT) vermittelt wird. Bei diesem Prozess verursachen die akkumulierten Elektronenspins ein auftretendes Netto-Moment, das senkrecht auf die Magnetisierungsorientierung des Nanopillars wirkt und so das Schalten ermöglicht.
In den STT-induzierten Schaltexperimenten wird der magnetische Zustand des Nanopillars durch eine bildgebendes Messverfahren mittels Rasterröntgentransmissionsmikroskopie (STXM) erfasst. So konnte gezeigt werden, dass sich die Magnetisierung des Pillars auch gegen das Oersted-Feld des Schaltstroms reversibel schalten lässt. / “Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nano electronic components. Therefore, new concepts for controlling the state of nano magnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar by means of Spin Transfer Torque (STT). In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM)” [1]. Therefore it could be demonstrated, to reversibly switch the nanopillar’s magnetic state even against the Oersted field which is induced by the switching current. Furthermore we could show, that magnetization switching is possible by a pure spin current that is diffusively transported beneath the nanopillar.
|
4 |
Spin Transfer Torque-induziertes Schalten von Nanomagneten in lateraler Geometrie bei RaumtemperaturBuhl, Matthias 07 April 2014 (has links)
Das Schalten und das Auslesen der magnetischen Ausrichtung einzelner winziger magnetischer Informationsspeicher müssen zu wirklich nanoskopischer Dimension entwickelt werden, um mit der Miniaturisierung von modernen, nanoelektronischen Bauteilen Schritt zu halten. Daher sind neue Konzepte, den magnetischen Zustand von Nanostrukturen elektronisch gezielt zu beeinflussen, derzeitig im Mittelpunkt wissenschaftlicher Untersuchungen.
Diese Arbeit befasst sich mit dem zuverlässigen Einstellen der Magnetisierung eines rein horizontal kontaktierten, nanoskopischen Magneten, in zwei stabile Zustände. Ein spinpolarisierter Strom wird bei Raumtemperatur in eine Leiterbahn unterhalb des magnetischen Nanopillars injiziert. Spindiffusion durch den Kontakt zwischen der Leiterbahn (Cu) und dem Pillar (CoFe) ruft eine Spin-Akkumulation im Nanopillar hervor, der durch den Spin Transfer Torque-Effekt (STT) vermittelt wird. Bei diesem Prozess verursachen die akkumulierten Elektronenspins ein auftretendes Netto-Moment, das senkrecht auf die Magnetisierungsorientierung des Nanopillars wirkt und so das Schalten ermöglicht.
In den STT-induzierten Schaltexperimenten wird der magnetische Zustand des Nanopillars durch eine bildgebendes Messverfahren mittels Rasterröntgentransmissionsmikroskopie (STXM) erfasst. So konnte gezeigt werden, dass sich die Magnetisierung des Pillars auch gegen das Oersted-Feld des Schaltstroms reversibel schalten lässt.:Kurzfassung v
Abstract vi
Danksagung xi
1 Einleitung 1
2 Grundlagen zu Spintronic 5
2.1 Elektronenspins als Grundlage für den Ferromagnetismus . . . . . . 6
2.2 Magnetowiderstandseffekte . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Anisotroper Magnetowiderstandseffekt (AMR) . . . . . . . . 8
2.2.2 Riesenmagnetowidersandseffekt (GMR) . . . . . . . . . . . . 10
2.2.3 Tunnelmagnetowiderstandeffekt (TMR) . . . . . . . . . . . 13
2.3 Spin–Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Spinpolarisation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Spin-Injektion und Spin-Akkumulation . . . . . . . . . . . . 17
2.3.3 Spinpolarisierter elektrischer Transport . . . . . . . . . . . . 20
2.4 Spin Transfer Torque (STT) . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Geometrien für Spintronic–Bauelemente . . . . . . . . . . . . . . . 30
3 Probenkonzept und Fabrikationsmethoden 35
3.1 Probenkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Anforderungen an die CIP–STT-Struktur . . . . . . . . . . . 37
3.1.2 Anforderungen an die ferromagnetischer Materialien . . . . . 38
3.2 Techniken der Probenfabrikation . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Elektronenstrahllithografie (EBL) . . . . . . . . . . . . . . . 41
3.2.2 Positiv- und Negtivlack Prozess . . . . . . . . . . . . . . . . 41
3.2.3 Physikalisches Ätzen . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Probenfabrikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Experimentelle Methoden 49
4.1 Transmissionsröntgenmikroskopie . . . . . . . . . . . . . . . . . . . 49
4.1.1 Rastertransmissionsröntgenmikroskopie (STXM) . . . . . . . 51
4.1.2 Kontrastmechanismen . . . . . . . . . . . . . . . . . . . . . 53
4.1.3 Röntgenmagnetischer zirkularer Dichroismus (XMCD) . . . 54
4.2 Magneto-optische Kerr–Effekt Mikroskopie . . . . . . . . . . . . . . 57
4.2.1 Kerr–Mikroskop . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Longitudinale Kerr–Geometrie . . . . . . . . . . . . . . . . . 58
5 STT–Experimente und Diskussion 61
5.1 Experimenteller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Eigenschaften der magnetischen Bauelemente . . . . . . . . . . . . . 64
5.2.1 MOKE-Mikroskopie . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Mikromagnetische Simulation . . . . . . . . . . . . . . . . . 67
5.2.3 Analytische Berechnung zum Nanopillar . . . . . . . . . . . 70
5.2.4 Röntgentransmissionsmikroskopie . . . . . . . . . . . . . . . 72
5.3 Spin Transfer Torque-Schalten . . . . . . . . . . . . . . . . . . . . 74
5.3.1 STT-Schalten mit unterstützendem Magnetfeld . . . . . . . 74
5.3.2 STT-Schalten ohne unterstützendes Magnetfeld . . . . . . . 79
5.3.3 Betrachtung besonderer experimenteller Aspekte . . . . . . . 81
5.3.4 STT-Schalten ohne direkten Ladungstransport . . . . . . . . 89
5.3.5 Magnetisierungsumkehr durch Oersted-Feld . . . . . . . . . 93
6 Zusammenfassung und Ausblick 97
A STXM-Hysteresemessungen der Polarisatoren und Nanopillar 101
Literaturverzeichnis 105 / “Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nano electronic components. Therefore, new concepts for controlling the state of nano magnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar by means of Spin Transfer Torque (STT). In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM)” [1]. Therefore it could be demonstrated, to reversibly switch the nanopillar’s magnetic state even against the Oersted field which is induced by the switching current. Furthermore we could show, that magnetization switching is possible by a pure spin current that is diffusively transported beneath the nanopillar.:Kurzfassung v
Abstract vi
Danksagung xi
1 Einleitung 1
2 Grundlagen zu Spintronic 5
2.1 Elektronenspins als Grundlage für den Ferromagnetismus . . . . . . 6
2.2 Magnetowiderstandseffekte . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Anisotroper Magnetowiderstandseffekt (AMR) . . . . . . . . 8
2.2.2 Riesenmagnetowidersandseffekt (GMR) . . . . . . . . . . . . 10
2.2.3 Tunnelmagnetowiderstandeffekt (TMR) . . . . . . . . . . . 13
2.3 Spin–Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Spinpolarisation . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Spin-Injektion und Spin-Akkumulation . . . . . . . . . . . . 17
2.3.3 Spinpolarisierter elektrischer Transport . . . . . . . . . . . . 20
2.4 Spin Transfer Torque (STT) . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Geometrien für Spintronic–Bauelemente . . . . . . . . . . . . . . . 30
3 Probenkonzept und Fabrikationsmethoden 35
3.1 Probenkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.1 Anforderungen an die CIP–STT-Struktur . . . . . . . . . . . 37
3.1.2 Anforderungen an die ferromagnetischer Materialien . . . . . 38
3.2 Techniken der Probenfabrikation . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Elektronenstrahllithografie (EBL) . . . . . . . . . . . . . . . 41
3.2.2 Positiv- und Negtivlack Prozess . . . . . . . . . . . . . . . . 41
3.2.3 Physikalisches Ätzen . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Probenfabrikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Experimentelle Methoden 49
4.1 Transmissionsröntgenmikroskopie . . . . . . . . . . . . . . . . . . . 49
4.1.1 Rastertransmissionsröntgenmikroskopie (STXM) . . . . . . . 51
4.1.2 Kontrastmechanismen . . . . . . . . . . . . . . . . . . . . . 53
4.1.3 Röntgenmagnetischer zirkularer Dichroismus (XMCD) . . . 54
4.2 Magneto-optische Kerr–Effekt Mikroskopie . . . . . . . . . . . . . . 57
4.2.1 Kerr–Mikroskop . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Longitudinale Kerr–Geometrie . . . . . . . . . . . . . . . . . 58
5 STT–Experimente und Diskussion 61
5.1 Experimenteller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Eigenschaften der magnetischen Bauelemente . . . . . . . . . . . . . 64
5.2.1 MOKE-Mikroskopie . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Mikromagnetische Simulation . . . . . . . . . . . . . . . . . 67
5.2.3 Analytische Berechnung zum Nanopillar . . . . . . . . . . . 70
5.2.4 Röntgentransmissionsmikroskopie . . . . . . . . . . . . . . . 72
5.3 Spin Transfer Torque-Schalten . . . . . . . . . . . . . . . . . . . . 74
5.3.1 STT-Schalten mit unterstützendem Magnetfeld . . . . . . . 74
5.3.2 STT-Schalten ohne unterstützendes Magnetfeld . . . . . . . 79
5.3.3 Betrachtung besonderer experimenteller Aspekte . . . . . . . 81
5.3.4 STT-Schalten ohne direkten Ladungstransport . . . . . . . . 89
5.3.5 Magnetisierungsumkehr durch Oersted-Feld . . . . . . . . . 93
6 Zusammenfassung und Ausblick 97
A STXM-Hysteresemessungen der Polarisatoren und Nanopillar 101
Literaturverzeichnis 105
|
Page generated in 0.0757 seconds