• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 20
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 90
  • 90
  • 45
  • 24
  • 19
  • 17
  • 16
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Investigação de parâmetros hiperfinos dos óxidos semicondutores SnO2 e TiO2 puros e dopados com metais de transição 3d pela espectroscopia de correlação angular gama-gama perturbada / Investigation of hyperfine parameters in pure and 3d transition metal doped SnO2 and TiO2 by means of perturbed gamma-gamma angular correlation spectroscopy

Schell, Juliana 19 February 2015 (has links)
O presente trabalho teve como objetivo utilizar a técnica nuclear de Correlação Angular γ-γ Perturbada (CAP) para a medida de interações hiperfinas em filmes finos e amostras em pó de óxidos semicondutores SnO2 e TiO2 puros e dopados com metais de transição para uma investigação sistemática de defeitos estruturais e do magnetismo sob o ponto de vista atômico tendo como principal motivação a candidatura à aplicação desses óxidos em spintrônica. O trabalho também teve como foco a preparação e caracterização das amostras por meio de técnicas convencionais, como difração de raios X, microscopia eletrônica de varredura, espectroscopia de energia dispersiva e medidas de magnetização. Amostras puras dos filmes foram medidas mediante a variação sistemática da temperatura de tratamento térmico e do campo magnético aplicado. Tais medidas foram realizadas no HISKP, na Universidade de Bonn (Rheinische Friedrich-Wilhelms-Universität Bonn), através de implantação de íons de 111In(111Cd) ou 181Hf(181Ta); no IPEN, por sua vez, essas medidas foram realizadas após a difusão dos mesmos núcleos de prova. Outra parte das medidas CAP foram feitas através de implantação de íons de 111mCd(111Cd) e 117Cd(117In) no Isotope Mass Separator On-Line (ISOLDE) do Centre Européen Recherche Nucléaire (CERN). As medidas foram realizadas nos intervalos de temperatura de 8 K a 1173 K. Para análise de ferromagnetismo, medidas foram feitas à temperatura ambiente com e sem aplicação de campo magnético externo. Após a comparação dos resultados das medidas macroscópicas e atômicas das amostras, foi possível concluir que há uma correlação entre os defeitos, o magnetismo e a mobilidade dos portadores de carga nos semicondutores aqui estudados. Um passo adiante na busca de semicondutores, cujo ordenamento magnético possibilite o seu uso na eletrônica baseada em spin. Alguns resultados já foram publicados, incluindo resultados obtidos na Universidade de Bonn durante o período de doutorado sanduíche [1-7]. / This study aimed the use of nuclear technique Perturbed γ-γ Angular Correlation Spectroccopy (PAC) to measure the hyperfine interactions in thin films and powder samples of SnO2 and TiO2 pure and doped with transition metals to obtain a systematic investigation of defects and magnetism from an atomic point of view with the main motivation the application in spintronics. The work also focused on the preparation and characterization of samples by conventional techniques such as X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and magnetization measurements. Pure samples of the films were measured by the systematic variation of thermal treatment and applied magnetic field. These measurements were performed in HISKP at the University of Bonn (Rheinische Friedrich-Wilhelms-Universität Bonn) using 111In(111Cd) or 181Hf (181Ta); at IPEN, in turn, these measurements were performed after the diffusion of the same probe nuclei. Another part of PAC measurements were carried out using 111mCd(111Cd) and 117Cd (117In) in Isotope Mass Separator On-Line (ISOLDE) at Centre Européen Recherche Nucléaire (CERN). The measurements were performed from 8 K to 1173 K. After comparing results from macroscopic techniques with those from PAC, it was concluded that there is a correlation between the defects, magnetism and the mobility of charge carriers in semiconductors studied here. A step forward in the search for semiconductors, whose magnetic ordering allows its use in electronics based on spin. Some results have been published, including results obtained at the University of Bonn for the sandwich doctorate period [1-7].
52

Density Functional Theory in Computational Materials Science

Osorio Guillén, Jorge Mario January 2004 (has links)
<p>The present thesis is concerned to the application of first-principles self-consistent total-energy calculations within the density functional theory on different topics in materials science.</p><p>Crystallographic phase-transitions under high-pressure has been study for TiO2, FeI2, Fe3O4, Ti, the heavy alkali metals Cs and Rb, and C3N4. A new high-pressure polymorph of TiO2 has been discovered, this new polymorph has an orthorhombic OI (Pbca) crystal structure, which is predicted theoretically for the pressure range 50 to 100 GPa. Also, the crystal structures of Cs and Rb metals have been studied under high compressions. Our results confirm the recent high-pressure experimental observations of new complex crystal structures for the Cs-III and Rb-III phases. Thus, it is now certain that the famous isostructural phase transition in Cs is rather a new crystallographic phase transition.</p><p>The elastic properties of the new superconductor MgB2 and Al-doped MgB2 have been investigated. Values of all independent elastic constants (c11, c12, c13, c33, and c55) as well as bulk moduli in the a and c directions (Ba and Bc respectively) are predicted. Our analysis suggests that the high anisotropy of the calculated elastic moduli is a strong indication that MgB2 should be rather brittle. Al doping decreases the elastic anisotropy of MgB2 in the a and c directions, but, it will not change the brittle behaviour of the material considerably.</p><p>The three most relevant battery properties, namely average voltage, energy density and specific energy, as well as the electronic structure of the Li/LixMPO4 systems, where M is either Fe, Mn, or Co have been calculated. The mixing between Fe and Mn in these materials is also examined. Our calculated values for these properties are in good agreement with recent experimental values. Further insight is gained from the electronic density of states of these materials, through which conclusions about the physical properties of the various phases are made.</p><p>The electronic and magnetic properties of the dilute magnetic semiconductor Mn-doped ZnO has been calculated. We have found that for an Mn concentration of 5.6%, the ferromagnetic configuration is energetically stable in comparison to the antiferromgnetic one. A half-metallic electronic structure is calculated by the GGA approximation, where Mn ions are in a divalent state leading to a total magnetic moment of 5 μB per Mn atom.</p>
53

Density Functional Theory in Computational Materials Science

Osorio Guillén, Jorge Mario January 2004 (has links)
The present thesis is concerned to the application of first-principles self-consistent total-energy calculations within the density functional theory on different topics in materials science. Crystallographic phase-transitions under high-pressure has been study for TiO2, FeI2, Fe3O4, Ti, the heavy alkali metals Cs and Rb, and C3N4. A new high-pressure polymorph of TiO2 has been discovered, this new polymorph has an orthorhombic OI (Pbca) crystal structure, which is predicted theoretically for the pressure range 50 to 100 GPa. Also, the crystal structures of Cs and Rb metals have been studied under high compressions. Our results confirm the recent high-pressure experimental observations of new complex crystal structures for the Cs-III and Rb-III phases. Thus, it is now certain that the famous isostructural phase transition in Cs is rather a new crystallographic phase transition. The elastic properties of the new superconductor MgB2 and Al-doped MgB2 have been investigated. Values of all independent elastic constants (c11, c12, c13, c33, and c55) as well as bulk moduli in the a and c directions (Ba and Bc respectively) are predicted. Our analysis suggests that the high anisotropy of the calculated elastic moduli is a strong indication that MgB2 should be rather brittle. Al doping decreases the elastic anisotropy of MgB2 in the a and c directions, but, it will not change the brittle behaviour of the material considerably. The three most relevant battery properties, namely average voltage, energy density and specific energy, as well as the electronic structure of the Li/LixMPO4 systems, where M is either Fe, Mn, or Co have been calculated. The mixing between Fe and Mn in these materials is also examined. Our calculated values for these properties are in good agreement with recent experimental values. Further insight is gained from the electronic density of states of these materials, through which conclusions about the physical properties of the various phases are made. The electronic and magnetic properties of the dilute magnetic semiconductor Mn-doped ZnO has been calculated. We have found that for an Mn concentration of 5.6%, the ferromagnetic configuration is energetically stable in comparison to the antiferromgnetic one. A half-metallic electronic structure is calculated by the GGA approximation, where Mn ions are in a divalent state leading to a total magnetic moment of 5 μB per Mn atom.
54

Properties of Multifunctional Oxide Thin Films Despostied by Ink-jet Printing

Fang, Mei January 2012 (has links)
Ink-jet printing offers an ideal answer to the emerging trends and demands of depositing at ambient temperatures picoliter droplets of oxide solutions into functional thin films and device components with a high degree of pixel precision. It is a direct single-step mask-free patterning technique that enables multi-layer and 3D patterning. This method is fast, simple, easily scalable, precise, inexpensive and cost effective compared to any of other methods available for the realization of the promise of flexible, and/or stretchable electronics of the future on virtually any type of substrate. Because low temperatures are used and no aggressive chemicals are required for ink preparation, ink-jet technique is compatible with a very broad range of functional materials like polymers, proteins and even live cells, which can be used to fabricate inorganic/organic/bio hybrids, bio-sensors and lab-on-chip architectures. After a discussion of the essentials of ink-jet technology, this thesis focuses particularly on the art of designing long term stable inks for fabricating thin films and devices especially oxide functional components for electronics, solar energy conversion, opto-electronics and spintronics. We have investigated three classes of inks: nanoparticle suspension based, surface modified nanoparticles based, and direct precursor solution based. Examples of the films produced using these inks and their functional properties are: 1) In order to obtain magnetite nanoparticles with high magnetic moment and narrow size distribution in suspensions for medical diagnostics, we have developed a rapid mixing technique and produced nanoparticles with moments close to theoretical values (APL 2011 and Nanotechnology 2012). The suspensions produced have been tailored to be stable over a long period of time. 2)In order to design photonic band gaps, suspensions of spherical SiO2 particles were produced by chemical hydrolysis (JAP 2010 and JNP 2011 - not discussed in the thesis). 3) Using suspension inks, (ZnO)1-x(TiO2)x composite films have been printed and used to fabricate dye sensitized solar cells (JMR 2012). The thickness and the composition of the films can be easily tailored in the inkjet printing process. Consequently, the solar cell performance is optimized. We find that adding Ag nanoparticles improves the ‘metal-bridge’ between the TiO2 grains while maintaining the desired porous structure in the films. The photoluminescence spectra show that adding Ag reduces the emission intensity by a factor of two. This indicates that Ag atoms act as traps to capture electrons and inhibit recombination of electron-hole pairs, which is desirable for photo-voltaic applications. 4) To obtain and study room temperature contamination free ferromagnetic spintronic materials, defect induced and Fe doped MgO and ZnO were synthesized ‘in-situ’ by precursor solution technique (preprints). It is found that the origin of magnetism in these materials (APL 2012 and MRS 2012) is intrinsic and probably due to charge transfer hole doping. 5) ITO thin films were fabricated via inkjet printing directly from liquid precursors. The films are highly transparent (transparency &gt;90% both in the visible and IR range, which is rather unique as compared to any other film growth technique) and conductive (resistivity can be ~0.03 Ω•cm). The films have nano-porous structure, which is an added bonus from ink jetting that makes such films applicable for a broad range of applications. One example is in implantable biomedical components and lab-on-chip architectures where high transparency of the well conductive ITO electrodes makes them easily compatible with the use of quantum dots and fluorescent dyes. In summary, the inkjet patterning technique is incredibly versatile and applicable for a multitude of metal and oxide deposition and patterning. Especially in the case of using acetate solutions as inks (a method demonstrated for the first time by our group), the oxide films can be prepared ‘in-situ’ by direct patterning on the substrate without any prior synthesis stages, and the fabricated films are stoichiometric, uniform and smooth. This technique will most certainly continue to be a versatile tool in industrial manufacturing processes for material deposition in the future, as well as a unique fabrication tool for tailorable functional components and devices. / <p>QC 20120907</p>
55

Density Functional Theory Applied to Materials for Spintronics

Iusan, Diana Mihaela January 2010 (has links)
The properties of dilute magnetic semiconductors have been studied by combined ab initio, Monte Carlo, and experimental techniques. This class of materials could be very important for future spintronic devices, that offer enriched functionality by making use of both the spin and the charge of the electrons. The main part of the thesis concerns the transition metal doped ZnO. The role of defects on the magnetic interactions in Mn-doped ZnO was investigated. In the presence of acceptor defects such as zinc vacancies and oxygen substitution by nitrogen, the magnetic interactions are ferromagnetic. For dilute concentrations of Mn (~ 5%) the ordering temperature of the system is low, due to the short ranged character of the exchange interactions and disorder effects. The clustering tendency of the Co atoms in a ZnO matrix was also studied. The electronic structure, and in turn the magnetic interactions among the Co atoms, is strongly dependent on the exchange-correlation functional used. It is found that Co impurities tend to form nanoclusters and that the interactions among these atoms are antiferromagnetic within the local spin density approximation + Hubbard U approach. The electronic structure, as well as the chemical and magnetic interactions in Co and (Co,Al)-doped ZnO, was investigated by joined experimental and theoretical techniques. For a good agreement between the two, approximations beyond the local density approximation must be used. It is found that the Co atoms prefer to cluster within the semiconducting matrix, a tendency which is increased with Al co-doping. We envision that it is best to describe the system as superparamagnetic due to the formation of  Co nanoclusters within which the interactions are antiferromagnetic. The magnetic anisotropy and evolution of magnetic domains in Fe81Ni19/Co(001) superlattices were investigated both experimentally, as well as using model spin dynamics. A magnetic reorientation transition was found.
56

Force detected nuclear magnetic resonance on (NH₄)₂SO₄ and MgB₂

Chia, Han-Jong 07 January 2011 (has links)
Nuclear magnetic resonance force microscopy (NMRFM) is a technique that combines aspects of scanning probe microscopy (SPM) and nuclear magnetic resonance (NMR) to obtain 3 dimensional nanoscale spatial resolution and perform spectroscopy. We describe the components of a helium-3 NMRFM probe and studies of ammonium sulfate ((NH₄)₂SO₄) and magnesium diboride (MgB₂). For our room temperature (NH₄)₂SO₄ studies we were able to perform a 1-D scan and perform nutation and spin echo experiments. In our 77 K MgB₂ we demonstrate a 1-D scan of a 30 micron powder sample. In addition, we describe magnetic measurements of the possible dilute semiconductors Mn[subscript x]Sc[subscript 1-x]N and Fe₀.₁Sc₀.₉N. / text
57

Synthesis of ZnO and transition metals doped ZnO nanostructures, their characterization and sensing applications

Chey, Chan Oeurn January 2014 (has links)
Nanotechnology is a technology of the design and the applications of nanoscale materials with their fundamentally new properties and functions. Nanosensor devices based on nanomaterials provide very fast response, low-cost, long-life time, easy to use for unskilled users, and provide high-efficiency. 1-D ZnO nanostructures materials have great potential applications in various sensing applications. ZnO is a wide band gap (3.37 eV at room temperature) semiconductor materials having large exciton binding energy (60 meV) and excellent chemical stability, electrical, optical, piezoelectric and pyroelectric properties. By doping the transition metals (TM) into ZnO matrix, the properties of ZnO nanostructures can be tuned and its room  temperature ferromagnetic behavior can be enhanced, which provide the TM-doped ZnO nanostructures as promising candidate for optoelectronic, spintronics and high performance sensors based devices. The synthesis of ZnO and TM-doped ZnO nanostructures via the low temperature hydrothermal method is considered a promising technique due to low cost, environmental friendly, simple solution process, diverse 1-D ZnO nanostructures can be achieved, and large scale production on any type of substrate, and their properties can be controlled by the growth parameters. However, to synthesize 1-D ZnO and TM-doped ZnO nanostructures with controlled shape, structure and uniform size distribution on large area substrates with desirable properties, low cost and simple processes are of high interest and it is a big challenge at present. The main purpose of this dissertation aims to develop new techniques to synthesize 1-D ZnO and (Fe, Mn)-doped ZnO nanostructures via the hydrothermal method, to characterize and to enhance their functional properties for developing sensing devices such as biosensors for clinical diagnoses and environmental monitoring applications, piezoresistive sensors and UV photodetector. The first part of the dissertation deals with the hydrothermal synthesis of ZnO nanostructures with controlled shape, structure and uniform size distribution under different conditions and their structural characterization. The possible parameters affecting the growth which can alter the morphology, uniformity and properties of the ZnO nanostructures were investigated. Well-aligned ZnO nanorods have been fabricated for high sensitive piezoresistive sensor. The development of creatinine biosensor for clinical diagnoses purpose and the development of glucose biosensor for indirect determination of mercury ions for an inexpensive and unskilled users for environmental monitoring applications with highly sensitive, selective, stable, reproducible, interference resistant, and fast response time have been fabricated based on ZnO nanorods. The second part of the dissertation presents a new hydrothermal synthesis of (Fe, Mn)-doped-ZnO nanostructures under different preparation conditions, their properties characterization and the fabrication of piezoresistive sensors and UV photodetectors based devices were demonstrated. The solution preparation condition and growth parameters that influences on the morphology, structures and properties of the nanostructures were investigated. The fabrication of Mn-doped-ZnO NRs/PEDOT:PSS Schottky diodes used as high performance piezoresistive sensor and UV photodetector have been studied and Fe-doped ZnO NRs/FTO Schottky diode has also been fabricated for high performance of UV photodetector. Finally, a brief outlook into future challenges and relating new opportunities are presented in the last part of the dissertation.
58

Electron spin dynamics in quantum dots, and the roles of charge transfer excited states in diluted magnetic semiconductors /

Liu, William K. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 114-127).
59

Formation de polarons magnétiques dans des boîtes quantiques de (Cd,Mn)Te insérées dans des nanofils de ZnTe / Magnetic polaron in (Cd,Mn)Te quantum dot inserted in ZnTe nanowire

Artioli, Alberto 17 June 2016 (has links)
Ce travail de thèse porte sur l’étude des propriétés optiques de boites quantiques anisotropes de (Cd,Mn)Te insérées dans des nanofils de ZnTe. Les boites quantiques étudiées contenant 10% de Mn sont allongées suivant l’axe du fil ce qui tend à favoriser un état fondamental à trou léger ayant une susceptibilité de spin perpendiculaire à l’axe du fil. L’objectif principal de la thèse est l’étude de la formation du Polaron Magnétique dans ces boites et la détermination de leur anisotropie magnétique.Nous avons étudié en premier les propriétés optiques de nanofils de ZnTe et de nanofils coeurs-coquilles ZnTe/(Zn,Mg)Te. Ces études nous ont amené à modéliser les contraintes élastiques dans le cœur, dans la coquille et dans des boites allongées insérées dans les nanofils. Ce modèle nous a permis d’estimer les splittings entre les niveaux de trou lourd et de trou léger dans la boite et dans le fil.Nous avons étudié ensuite des nanofils contenant des boites magnétiques et non magnétiques par spectroscopie magnéto-optique. Dans les boites magnétiques, les interactions d’exchange entre les porteurs localisés et les spins de Mn induisent un très fort décalage Zeeman de la raie excitonique (Effet Zeeman Géant). Pour extraire des paramètres quantitatifs, nous avons combiné différentes techniques expérimentales sur le même nanofil (photo et cathodoluminescence, analyse dispersive en énergie du rayonnement X). Nous avons utilisé différentes orientations du champ magnétique pour déterminer l’anisotropie du trou dans la boite. Les valeurs expérimentales sont plus petites que les valeurs théoriques ce qui suggère un mauvais confinement du trou dans la boite.Afin d’obtenir un meilleur confinement du trou, nous avons étudié des boites de (Cd,Mn)Te entourées d’une coquille de (Zn,Mg)Te. Grace au meilleur confinement du trou, nous avons réussi à observer la formation du Polaron Magnétique excitonique. Des mesures de photoluminescence résolues en temps sur des nanofils uniques nous ont permis d’extraire l’énergie et le temps de formation du Polaron Magnétique entre 5K et 50K. La raie d’émission des boites présente un effet Zeeman géant inhabituel caractéristique d’un Polaron Magnétique à trou léger. Nous avons développé un modèle théorique pour décrire la formation du Polaron Magnétique excitonique dans les boites quantiques. Ce model, basé sur l’énergie libre et valable pour des températures et des champs magnétiques arbitraires, a été utilisé pour rendre compte de l’ensemble des données expérimentales. Ce modèle a permis de déterminer les paramètres caractéristiques du polaron magnétique à trou léger (énergie, orientation and amplitude du moment magnétique, volume d’échange, anisotropie du trou). / In this PhD work we study the optical properties of anisotropic (Cd,Mn)Te magnetic quantum dots inserted in ZnTe nanowires. The quantum dots containing typically 10% of Mn spins are elongated along the nanowire axis which tend to stabilize a light hole ground state with a spin susceptibility perpendicular to the nanowire axis. The main goal was to study the formation of exciton Magnetic Polarons in such quantum dots and to determine their magnetic anisotropy.We investigate first the optical properties of ZnTe and ZnTe/(Zn,Mg)Te core shell nanowires. We model the elastic strain profile in core-shell nanowires and in elongated quantum dots. From the strain profiles, we estimate the value of the light hole heavy hole splitting expected in the dot and in the nanowire.In a second step we study single nanowires containing magnetic and non magnetic quantum dots by magneto-optical spectroscopy. The exchange interactions between confined carriers and Mn spins induce a large Zeeman shift of the exciton line (Giant Zeeman Effect). To extract quantitative parameters, we combine different experimental techniques (photo and cathodoluminescence, energy dispersive X ray spectroscopy) on the same nanowire. We use also different magnetic field orientations in order to determine the hole anisotropy in the dot. The experimental values are smaller than the theoretical ones suggesting a weak confinement of the holes in the dot due to a small (Cd,Mn)Te/ZnTe valence band offset.In a third step we study nanowires containing (Cd,Mn)Te quantum dots surrounded by a (Zn,Mg)Te alloy. Thanks to the better hole confinement induced by the (Zn,Mg)Te alloy, the formation of exciton magnetic polarons can be observed. We perform time resolved photoluminescence studies on single nanowires in order to determine the energy and the formation time of magnetic polarons from 5K to 50K. The quantum dot emission line shows an unusual Zeeman shift, characteristic of a light hole magnetic polaron. We develop a theoretical model describing the formation of exciton magnetic polaron in quantum dots. We use this model, based on the free energy and valid for any temperature and magnetic field, to fit the whole set of experimental data. It allows us to determine the characteristic parameters of the light hole magnetic polarons (energy, orientation and magnitude of the magnetic moment, exchange volume, hole anisotropy).
60

Engenharia de defeitos em semicondutores de gap largo

Herval, Leonilson Kiyoshi Sato de 14 December 2015 (has links)
Submitted by Regina Correa (rehecorrea@gmail.com) on 2016-09-21T18:57:01Z No. of bitstreams: 1 TeseLKSH.pdf: 62711757 bytes, checksum: dd2b481497af4493346131729910c613 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-23T18:36:35Z (GMT) No. of bitstreams: 1 TeseLKSH.pdf: 62711757 bytes, checksum: dd2b481497af4493346131729910c613 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-23T18:36:40Z (GMT) No. of bitstreams: 1 TeseLKSH.pdf: 62711757 bytes, checksum: dd2b481497af4493346131729910c613 (MD5) / Made available in DSpace on 2016-09-23T18:36:47Z (GMT). No. of bitstreams: 1 TeseLKSH.pdf: 62711757 bytes, checksum: dd2b481497af4493346131729910c613 (MD5) Previous issue date: 2015-12-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Defects play a fundamental issue on physical properties of wide bandgap semiconductors (WBS) due to the possibility of application in high temperature. This work shows the features of the defects in di erent kind of WBS grown/synthesized by solid state reaction, Pechini method and Molecular Beam Epitaxy. First we investigated the structural and optical properties of erbium- and manganese-doped strontium aluminates (SrAl2O4). The fundamental optical transitions due to Er3+ and Mn2+ are typical features of the well-diluted doping process. A signi cant enhancement of the Er3+ optical emission band at 1530 nm was observed when the matrix is co-doped with Mn. A model of energy transfer mechanism from Mn2+ to Er3+ is proposed to explain the experimental results. We present also the e ect of preparation and annealing conditions on the properties of Nb2O5. The increase of oxygen vacancies causes an inrreversible phase transition from pseudohexagonal to orthorhombic phase, and they are responsible for the increase in the e ective magnetic moments related to paramagnetic behavior. Finally, we explore the e ects of the interfaces imperfections of quantum wells of cubic GaN alloys. An indication of localized states in low temperature is observed. A decrease of this e ects happens when we increase the number of interfaces. Furthermore, magneto-PL measurements show a higher spin polarizations in the donor-acceptor impurities in the bulk of c-GaN corroborate for the importance of the defects. This work shows that the defects engineering in WBS are fundametal for developing new technologies in spintronics and optoelectronic eld. / Os defeitos em semicondutores acarretam mudanças nas propriedades físicas do material, tendo uma grande importância nos semicondutores que possuem alta energia de gap devido à possibilidade de aplicação em alta temperatura. No presente trabalho, estudamos as características atribuídas à presença de defeitos em diferentes semicondutores de gap largo, crescidos/sintetizados por reação de estado sólido, método de Pechini e epitaxia de feixes moleculares. Primeiramente, investigamos as propriedades ópticas e estruturais do aluminato de estrôncio (SrAl2O4) dopado com érbio e co-dopado com manganês. Neste caso, um aumento na emissão do Er3+ na região do infravermelho (1530 nm) foi observado na matriz com co-dopagem de manganês. Atribuímos este efeito ao mecanismo de transferência de energia do íon de Mn2+ para o Er3+. Também estudamos os efeitos das condições de preparação e tratamento térmico nas propriedades de pentóxido de nióbio (Nb2O5). Nossa investigação, mostra que vacâncias de oxigênio causam transições irreversíveis da fase pseudo-hexagonal para a ortorrômbica. Além disso, esses defeitos são responsáveis por um acréscimo de momentos magnéticos efetivos, relacionados com o comportamento paramagnético. Por último, averiguamos os efeitos de imperfeições entre as interfaces de poços quânticos de ligas de nitreto de gálio cúbico (cGaN). Esse estudo indicou uma diminuição de estados localizados, em baixa temperatura, com a mudança na quantidade de interfaces do QW. No caso do c GaN bulk, foi observado uma maior polarização de spin na emissão óptica da impureza doadora-aceitadora. Este trabalho evidencia a importância da engenharia de defeitos em semicondutores de gap largo para o aperfeiçoamento de tecnologias ligadas à área de optoeletrônica e spintrônica.

Page generated in 0.0898 seconds