• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a magnetic targeting device applied to interlocking of distal intramedullary nail screw holes

Szakelyhidi, David C. 30 July 2002 (has links)
Each year, thousands of femoral and tibial internal fracture repairs are performed by orthopedic surgeons in the United States. Internal fixation of long bones using intramedullary nails (IMN) has decreased incidence of non-union, allowed shorter hospitalization time, and earlier weight bearing for the patient compared to other fixation methods. Orthopedic surgeons have expressed that one of the most difficult parts of this intramedullary nailing of long bones, is locating and drilling the interlocking screw holes. IMN interlocking requires the surgeon to locate the holes in the nail, center the drill, and advance the bit through the bone to meet them. Many novel procedures and devices have been developed to assist the surgeon in distal locking of intramedullary nails, but have some disadvantages. These can include the need for extensive x-ray exposure, expensive x-ray equipment, high power consumption, active electronics in vivo, soft tissue damage, which all lead to inaccurate screw placement. For these reasons, a new prototype device for locating and drilling IMN distal interlocking holes has been developed. This prototype device uses magnetic sensors to locate a permanent magnet placed at a know distance from the IMN interlocking hole. A drill sleeve may be attached to the targeting sensors so that when they are aligned with the target magnet, the drill sleeve is aligned with the axis of the interlocking hole to be drilled. This new prototype device has significant advantages over existing devices, including the following. It has no active or passive electronics in vivo, no x-ray imaging is needed for targeting, while allowing real time feedback of alignment. It is a percutaneous technique, which can be adapted for use with existing IMN's. The new prototype also has low power requirements allowing battery operation, a single target magnet with unique axisymmetric field and novel magnet orientation, and adjustable sensitivity. Additionally, the new device allows visual, audible, or tactile positioning feedback. This prototype magnetic targeting device can improve orthopedic surgeons' ability to target and drill distal IMN interlocking screw holes. This device may allow shorter surgery, decreased x-ray exposure, and fewer complications for the surgeon and patient. / Master of Science
2

Magnetically targeted deposition and retention of particles in the airways for drug delivery

Ally, Javed Maqsud 06 1900 (has links)
This thesis examines the mechanisms of magnetic particle deposition and retention in human airways for magnetically targeted drug delivery. As this is a novel application, fundamental studies were performed to establish the necessary background knowledge for further development. Magnetic particle deposition from an aerosol in simulated airway conditions was studied using numerical and experimental models. The model results showed qualitative agreement; discrepancies were due to particle aggregation, which enhances deposition. Aerosol flow rate had a limited effect; the main factor in effective deposition was the proximity of the particle trajectories to the magnets. This spatial bias shows the importance of particle distribution in the flow as well as magnetic field geometry. These studies demonstrated the feasibility of capturing magnet particles from aerosol in airway conditions. For retention, clearance of particles due to motion of the mucus lining of the airways must be overcome. Particle retention was studied in vitro using various liquids to simulate mucus and identify relevant parameters. An ex vivo animal tissue model was used to demonstrate feasibility. Retention of 3-5 m diameter iron particles was achieved at reduced liquid/mucus viscosities. Larger (~100 m) particles were retained at normal mucus viscosities. The size dependence shows that particle aggregation after deposition is crucial for effective retention. In vitro retention experiments showed aggregate size is correlated with liquid viscosity, i.e. formation of aggregates is limited by forces opposing particle motion along the mucus layer interface. To determine these forces, particle motion on various air-liquid interfaces, chosen to simulate different mucus properties in isolation, was studied. When surfactants are present, as in the mucus layer, particle motion is limited by a velocity-dependent surface tension gradient as well as viscous drag. Pulling particles through the mucus layer into the tissue beneath was also considered as a potential retention strategy. The force required to pull particles through the mucus layer was also studied using various liquids to simulate mucus properties. In addition to the surface tension force holding the particles at the interface, hydrodynamic forces must be overcome to pull particles into or out of a liquid film such as the mucus layer.
3

Magnetically targeted deposition and retention of particles in the airways for drug delivery

Ally, Javed Maqsud Unknown Date
No description available.
4

Liposomes théranostiques pour le ciblage magnétique et le relargage d'un antitumoral par ultrasons focalisés, suivis par IRM multiparamétrique / Theranostic liposomes for magnetic targeting and antitumoral drug release triggered by focused ultrasounds, monitored by multiparametric MRI

Thebault, Caroline 01 June 2017 (has links)
Les systèmes théranostiques associant des propriétés thérapeutiques et des propriétés d'imagerie sont développés pour permettre le suivi de traitement in vivo. La stratégie que nous proposons dans cette thèse est de formuler des liposomes magnétiques thermosensibles chargés en principe actif pour traiter des tumeurs murines superficielles du côlon CT26. Ces nanovecteurs peuvent être accumulés dans les tumeurs par ciblage magnétique et le relargage du principe actif peut être déclenché par HIFU (Ultrasons Focalisés de Haute Intensité). Ces liposomes sont développés par co-encapsulation de nanoparticules de maghémite (?-Fe2O3) et de Combrétastatine A4 Phosphate (CA4P) dans des liposomes thermosensibles. La forte encapsulation des nanoparticules magnétiques dans les Liposomes Ultra-Magnétiques (LUM) permet à la fois le ciblage magnétique et leur suivi in vivo par IRM. Le chauffage par HIFU in vitro à la température de transition des membranes des LUM a permis une amélioration du relargage de la CA4P. La biodistribution des LUM in vivo a été évaluée par IRM dynamique de contraste de susceptibilité avec une résolution temporelle adaptée à la cinétique de capture des nanovecteurs, notamment par le foie. L'efficacité du ciblage magnétique a été démontrée grâce à une nouvelle méthode de traitement de l'histogramme des intensités IRM. Enfin, l'ajustement in vivo des séquences d'HIFU permet le relargage du principe actif. L'efficacité du traitement est ensuite suivie par IRM multiparamétrique anatomique, pondérée T2* de diffusion et de perfusion pour évaluer l'impact sur la fonctionnalité vasculaire et l'évolution tumorale, ainsi que par histologie. / Theranostic systems with imaging and therapeutic properties are developed to monitor treatments in vivo. The strategy we propose here is to design thermosensitive drug-loaded magnetic liposomes to treat superficial colon tumors CT26 on mice. These nanocarriers can be accumulated in the tumor by using a magnetic field gradient and the drug release can be triggered by a local heating induced by HIFU (High Intensity Focused Ultrasounds). They have been developed by co-encapsulation of magnetic nanoparticles and the antitumoral drug CA4P (Combretastatin A-4 Phosphate) in thermosensitive liposomes. The high loading of maghemite (γ-Fe2O3) magnetic nanoparticles enables both magnetic targeting and in vivo monitoring by MRI of this Ultra-Magnetic Liposomes (UML). In vitro HIFU heating at the UML membrane transition temperature improved the drug release. In vivo UML biodistribution was evaluated with dynamic susceptibility contrast imaging adjusted in time acquisition in MRI and the magnetic targeting efficiency was shown with a new MRI imaging processing. Adjustments of in vivo HIFU sequences to locally heat the tumor at the UML transition temperature allowed the triggering of drug release. Treatment efficiency was monitored by multiparametric diffusion, T2* weighted, anatomical and perfusion MRI and histology.
5

Nanotechnologie a biomateriály pro využití v buněčné terapii míšního poranění / Nanotechnology and biomaterials for application in cell therapy of spinal cord injury

Vaněček, Václav January 2013 (has links)
New approaches for the treatment of SCI use advances in the fields of nanotechnology, biomaterial science and cell therapy. The results presented in this thesis showed that superparamagnetic iron oxide nanoparticles coated with a stable dopamine-hyaluronane associate can be used for the safe and effective labeling of MSC. Cell labeling efficiency, viability and the relaxivity of the tested particles were significantly better than those obtained with the commercial particles Endorem®. The DPA-HA coated nanoparticles can be used for the noninvasive monitoring of cell therapy using MRI. Furthermore, we showed that SPION can be used for the targeted delivery of MSC to the site of a spinal cord lesion. The labeled cells can be concentrated in the lesion area by means of a magnetic implant. The process of cell targeting depends on the physical characteristics of the magnetic implant as well as on the biological features of the cells and nanoparticles, as we described with a proposed mathematical model. It is possible to modify the properties of the magnetic system, e.g. by changing the shape or size of the magnet, thus tuning the magnetic force distribution and the gradient of the magnetic field necessary for effective cell targeting. A promising therapeutic strategy for the treatment of spinal cord injury is the...
6

Σύνθεση και χαρακτηρισμός φερριτικών νανοκολλοειδών με προσθήκη προσμίξεων ψευδαργύρου και μαγγανίου / Synthesis and characterization of ferrite nanocolloids doped with zinc and manganese

Παπαϊωάννου, Νικόλαος 10 December 2013 (has links)
Τα δομικά χαρακτηριστικά των μαγνητικών κολλοειδών με βάση το οξείδιο του σιδήρου είναι ιδιαίτερα σημαντικά κατά την χρήση τους σε βιοϊατρικές εφαρμογές όπως η απεικόνιση σε μαγνητικό τομογράφο (MRI), η μεταφορά φαρμάκων, η μαγνητική υπερθερμία και στόχευση. Ιδιαίτερα για την μαγνητική στόχευση, η αύξηση της μαγνήτισης κορεσμού των κολλοειδών είναι ιδιαίτερης σημασίας. Συνεπώς, η μελέτη της σχέσης δομής-ιδιοτήτων είναι απαραίτητη για την περαιτέρω βελτίωση της απόδοσης των εν λόγω συστημάτων στις προαναφερθείσες εφαρμογές. Με στόχο τη βελτίωση της μαγνήτισης κορεσμού αυτών των υλικών έχει μελετηθεί στο παρελθόν μια στρατηγική αντικατάστασης ενός ποσοστού ιόντων σιδήρου στη δομή του νανοκρυστάλλου με άλλα μεταλλικά ιόντα. Οι μελέτες αυτές έχουν δείξει πως αναλόγως της συνθετικής πορείας άλλοτε επιτυγχάνεται το επιθυμητό αποτέλεσμα και άλλοτε όχι. Σε αυτά τα πλαίσια, σκοπός της παρούσας εργασίας ήταν η εφαρμογή αυτής της στρατηγικής σε μία συνθετική πορεία ανάπτυξης μαγνητικών νανοκολλοειδών στην οποία δεν έχει εκτιμηθεί μέχρι τώρα η επιτυχία της. Το ενδιαφέρον έγκειται στο γεγονός ότι η συγκεκριμένη συνθετική πορεία οδηγεί σε νανοκρυσταλλίτες οξειδίου του σιδήρου με αυξημένες μαγνητικές ιδιότητες σε σχέση με τη βιβλιογραφία, οι οποίες θα μπορούσαν (πιθανώς) να βελτιωθούν ακόμα περισσότερο με μερική ιοντική αντικατάσταση. Τα νανοκολλοειδή παρασκευάστηκαν με την μέθοδο της υδρολυτικής αλκαλικής καταβύθισης από μία πρόδρομη ένωση σιδήρου (FeCl2 ή FeSO4), με προσμίξεις διαφόρων αναλογιών με Zn(Cl2/SO4) ή Mn(Cl2/SO4). Η χημική τροποποίηση της επιφάνειας των μαγνητικών νανοκολλοειδών έγινε με στοχευμένη προσθήκη του φυσικού βιοπολυμερούς του αλγινικού νατρίου κατά τη διαδικασία κρυστάλλωσης του ανόργανου μαγνητικού πυρήνα. Η μελέτη των φυσικοχημικών χαρακτηριστικών και της δομής των νανοφορέων πραγματοποιήθηκε με την χρήση των παρακάτω αναλυτικών τεχνικών: Ηλεκτρονική Μικροσκοπία Σάρωσης (SEM) σε συνδυασμό με Φασματομετρία Ενεργειακής Διασποράς Ακτινοβολίας-X (EDS), Περίθλαση Ακτινοβολίας-X (XRD), Θερμοσταθμική Ανάλυση (TGA), Δυναμική Σκέδαση Φωτός (DLS), Ηλεκτροκινητικές Μετρήσεις, Μαγνητομετρία Δονούμενου Δείγματος (VSM), Μαγνητοφόρηση και Μαγνητική Υπερθερμία Δείγματος. / Structural characteristics of magnetic ferrite nanocolloids are particularly important in biomedical applications such as magnetic resonance imaging (MRI), drug delivery, magnetic hyperthermia and targeting. Particularly about magnetic targeting, increasing saturation magnetization is crucial. Therefore, studying the structure-properties relation of colloids is necessary, in order to improve further the performance of these systems in the above applications. In order to enhance the saturation magnetization of those materials, substitution of a percentage of iron ions in the structure of the nanocrystal with other metal ions has been previously studied. Results have shown that the desired properties are obtained under certain circumstances, depending on the synthetic route. Within this frame, the goal of the present work is to test this strategy on a synthetic route which has not been so far evaluated. The interest lies in the fact that this synthetic route leads to iron oxide nanocrystallites with increased magnetic properties compared to the literature, which could (possibly) be further improved with partial ionic replacement. Nanocolloids were synthesized by hydrolytic alkaline precipitation from a single iron molecular precursor (FeCl2 or FeSO4), doped at different ratios with Zn(Cl2/SO4) or Mn(Cl2/SO4). The surface modification of the magnetic nanocolloids was performed by in-situ grafting of the natural biopolymer of sodium alginate, during the crystallization process of the inorganic magnetic core. The evaluation of the structural, magnetic and physicochemical characteristics of the nanocarriers was performed with the use of the following analytical techniques: Scanning Electron Microscopy (SEM) in conjunction with Energy-Dispersive X-Ray Spectrometry (EDS), X-Ray Diffraction (XRD), Thermal Gravimetric Analysis (TGA), Dynamic Light Scattering (DLS), Electrokinetic Measurements, Vibrating Sample Magnetometer (VSM), Magnetophoresis and Magnetic Hyperthermia of the Sample.
7

Syntheses of iron oxide and other transition metal oxide nanoparticles, and their modifications for biomedical applications

Yathindranath, Vinith 27 March 2014 (has links)
Superparamagnetic iron oxide (Fe3O4 and γ-Fe2O3) nanoparticles (IONPs) are of great in-terest as a diagnostic and/or therapeutic aid. Several IONPs with biocompatible polymer coatings have been approved for clinical use, as MRI contrast agents. IONPs conjugated to targeting ligands and therapeutic agents are being investigated for targeted drug deliv-ery applications. The superparamagnetic properties of IONPs are also helpful for magnetic field assisted localization to specific target sites and for in situ MRI applications. This thesis primarily focuses on the synthesis and surface modifications (with biocompatible polymers including dextran, poly(ethylene glycol) (PEG), dextran, poly(ethyl methacry-late) (PEMA), poly(hydroxyethyl methacrylate) (PHEMA), etc.) of IONPs. The IONPs were prepared following the classical co-precipitation method and a novel reduction-hydrolysis method. Initial studies used bovine serum albumin (BSA) to examine the ca-pabilities of polymer coated IONP to deliver a model protein therapeutic. Gel migration studies using BSA physisorbed onto polymer coated IONP under gradient magnetic field of an MRI showed that the IONPs had limited control in transporting the protein. Cova-lent linking of therapeutics to IONP core can improve the time window of formers con-trollability using magnetic field. To facilitate covalent conjugations, functional silane coated IONPs (with surface amino and carboxylic acid) were prepared as general precur-sors. The utility of silane coated IONPs for bioconjugations was demonstrated by cova-lently linking PEG diacid through surface amino groups and by linking of BSA through surface carboxylic acid groups. The biocompatibility of the IONPs synthesized following the novel reduction-hydrolysis method were assessed in vitro on cell culture models using toxicity assays. The versatile reduction-hydrolysis method was further extended, as a general method to prepare several early transition metal oxide NPs (manganese oxide (Mn3O4), cobalt oxide (Co3O4), nickel/nickel oxide (Ni/NiO), copper/copper oxide (Cu/Cu2O) and zinc oxide (ZnO) NPs), silica nanoparticles with surface IONPs, and iron/iron oxide nanosheets.
8

Estudo de nanopartículas de ouro e de magnetita voltadas para medicina diagnóstica / Study of gold and magnetite nanoparticles for medical diagnostics applicatios

Uchiyama, Mayara Klimuk 14 August 2015 (has links)
A teragnóstica de doenças tem sido extremamente marcada nos últimos anos por nanomateriais formados pela conjugação de nanopartículas a biomoléculas, pois a aplicação de tecnologias baseadas em materiais na dimensão nanométrica é capaz de aumentar a seletividade, sensibilidade e praticidade dos métodos atualmente empregados, ou mesmo criar novos métodos de diagnóstico e tratamento de doenças. Dentre os vários tipos de nanomateriais desenvolvidos, aqueles baseados em nanopartículas de ouro ou nanopartículas magnéticas apresentam propriedades químicas e físicas diferenciadas que propiciam novas possibilidades. Por exemplo, a presente tese demonstrou que nanopartículas superparamagnéticas são excelentes agentes de contraste em exames de imagem por ressonância magnética (IRM) por serem mais seguros, apresentarem melhor contraste nas imagens e possibilitarem direcionar/concentrar o material em tecidos ou tumores através de um gradiente de campo magnético aplicado. Foram feitos numerosos ensaios de toxicidade tanto in vitro quanto in vivo para assegurar a segurança da aplicação de nanopartículas no organismo, cujo potencial de uso somente se tornará uma realidade caso os nanomateriais se mostrem não tóxicos e biocompatíveis. Apesar dos significativos avanços na área da aplicação desses nanomateriais, não foram encontrados na literatura modelos capazes de explicar ou prever por quais sítios de ligação devem ocorrer as interações proteína-nanopartícula, como também não foram encontrados estudos sistemáticos acerca dos fatores que determinam a estabilidade e a funcionalidade dos nanobioconjugados (NBCs). Assim, nesta tese buscamos compreender os fatores responsáveis pela ligação/adsorção das proteínas nas nanopartículas de ouro e sua influência sobre a estabilidade das suspensões e a funcionalidade das proteínas. Desta forma, foram obtidos NBCs com propriedades adequadas para o desenvolvimento ou aprimoramento de ensaios de diagnóstico e até para o tratamento de doenças. Foi demonstrado o potencial das nanopartículas de ouro para melhorar a performance de imunoensaios do tipo ELISA, mas também podem ser utilizadas para o desenvolvimento de métodos de diagnóstico, explorando as propriedades plasmônicas das nanopartículas de ouro acopladas a técnicas como SERS, SPR e microscopia Raman confocal. / Theranostics has been intensively pursued in recent years using hybrid materials based on nanoparticles conjugated with biomolecules. This is an interesting strategy to increase the selectivity and sensitivity, as well as to improve the currently used methods facilitating their use or creating new ones. Among the various types of nanomaterials, those based on gold and magnetic nanoparticles exhibit interesting chemical and physical properties in the biological environment, differing from that of free drugs or current explored in assay methods. For example, superparamagnetic nanoparticles are excellent contrast agents for magnetic resonance image (MRI) diagnostics because they are safer, present a better contrast efficiency for imaging and can be magnetically accumulated in tissues or tumors using a magnetic field. Numerous in vitro and in vivo toxicity assays were performed to ensure the safety for medical applications. Clearly, these type of applications only will be realized if nanomaterials prove to be nontoxic and biocompatible. This imply an strict control on their structure and composition. However, despite the significant advances in the development of such nanomaterials, there were not found in the literature model systems explaining or that can be used to predict by which sites the protein-nanoparticle binding should take place. In addition, no systematic studies on the factors determining the stability and the functionality of nanobioconjugates (NBC) were found. Thus, this thesis is focused in unveiling the factors responsible for binding/adsorption of proteins on gold nanoparticles and their influence on the colloidal stability of hybrid nanoparticles suspensions while keeping the functionality of biomolecules. In fact, NBC with enhanced properties suitable for the development of diagnostic methods and even for treatment of diseases were obtained. These nanomaterials can improve the ELISA immunoassay, or other diagnosis methods can be developed by using the gold nanoparticles plasmonic properties in association with SERS, SPR and confocal Raman microscopy techniques.
9

Estudo de nanopartículas de ouro e de magnetita voltadas para medicina diagnóstica / Study of gold and magnetite nanoparticles for medical diagnostics applicatios

Mayara Klimuk Uchiyama 14 August 2015 (has links)
A teragnóstica de doenças tem sido extremamente marcada nos últimos anos por nanomateriais formados pela conjugação de nanopartículas a biomoléculas, pois a aplicação de tecnologias baseadas em materiais na dimensão nanométrica é capaz de aumentar a seletividade, sensibilidade e praticidade dos métodos atualmente empregados, ou mesmo criar novos métodos de diagnóstico e tratamento de doenças. Dentre os vários tipos de nanomateriais desenvolvidos, aqueles baseados em nanopartículas de ouro ou nanopartículas magnéticas apresentam propriedades químicas e físicas diferenciadas que propiciam novas possibilidades. Por exemplo, a presente tese demonstrou que nanopartículas superparamagnéticas são excelentes agentes de contraste em exames de imagem por ressonância magnética (IRM) por serem mais seguros, apresentarem melhor contraste nas imagens e possibilitarem direcionar/concentrar o material em tecidos ou tumores através de um gradiente de campo magnético aplicado. Foram feitos numerosos ensaios de toxicidade tanto in vitro quanto in vivo para assegurar a segurança da aplicação de nanopartículas no organismo, cujo potencial de uso somente se tornará uma realidade caso os nanomateriais se mostrem não tóxicos e biocompatíveis. Apesar dos significativos avanços na área da aplicação desses nanomateriais, não foram encontrados na literatura modelos capazes de explicar ou prever por quais sítios de ligação devem ocorrer as interações proteína-nanopartícula, como também não foram encontrados estudos sistemáticos acerca dos fatores que determinam a estabilidade e a funcionalidade dos nanobioconjugados (NBCs). Assim, nesta tese buscamos compreender os fatores responsáveis pela ligação/adsorção das proteínas nas nanopartículas de ouro e sua influência sobre a estabilidade das suspensões e a funcionalidade das proteínas. Desta forma, foram obtidos NBCs com propriedades adequadas para o desenvolvimento ou aprimoramento de ensaios de diagnóstico e até para o tratamento de doenças. Foi demonstrado o potencial das nanopartículas de ouro para melhorar a performance de imunoensaios do tipo ELISA, mas também podem ser utilizadas para o desenvolvimento de métodos de diagnóstico, explorando as propriedades plasmônicas das nanopartículas de ouro acopladas a técnicas como SERS, SPR e microscopia Raman confocal. / Theranostics has been intensively pursued in recent years using hybrid materials based on nanoparticles conjugated with biomolecules. This is an interesting strategy to increase the selectivity and sensitivity, as well as to improve the currently used methods facilitating their use or creating new ones. Among the various types of nanomaterials, those based on gold and magnetic nanoparticles exhibit interesting chemical and physical properties in the biological environment, differing from that of free drugs or current explored in assay methods. For example, superparamagnetic nanoparticles are excellent contrast agents for magnetic resonance image (MRI) diagnostics because they are safer, present a better contrast efficiency for imaging and can be magnetically accumulated in tissues or tumors using a magnetic field. Numerous in vitro and in vivo toxicity assays were performed to ensure the safety for medical applications. Clearly, these type of applications only will be realized if nanomaterials prove to be nontoxic and biocompatible. This imply an strict control on their structure and composition. However, despite the significant advances in the development of such nanomaterials, there were not found in the literature model systems explaining or that can be used to predict by which sites the protein-nanoparticle binding should take place. In addition, no systematic studies on the factors determining the stability and the functionality of nanobioconjugates (NBC) were found. Thus, this thesis is focused in unveiling the factors responsible for binding/adsorption of proteins on gold nanoparticles and their influence on the colloidal stability of hybrid nanoparticles suspensions while keeping the functionality of biomolecules. In fact, NBC with enhanced properties suitable for the development of diagnostic methods and even for treatment of diseases were obtained. These nanomaterials can improve the ELISA immunoassay, or other diagnosis methods can be developed by using the gold nanoparticles plasmonic properties in association with SERS, SPR and confocal Raman microscopy techniques.
10

Magnétoliposomes pour le diagnostic et le traitement du glioblastome par vectorisation magnétique et hyperthermie / Magnetic-fluid-loaded liposomes for diagnosis and treatment of glioblastoma by magnetic targeting and hyperthermia

Marie, Hélène 06 November 2013 (has links)
L’ensemble de l’étude in vivo réalisée sur souris porteuses de glioblastome U87 démontre la faisabilité du ciblage magnétique pour accumuler les magnétoliposomes superparamagnétiques, ou MFLs, au niveau du glioblastome, tout en préservant le reste du tissu cérébral sain. L’étude révèle que le bénéfice apporté par l’action d’un gradient de champ magnétique produit par un aimant extracorporel repose sur un effet EPR (« enhanced permeation and retention » effect) amplifié. Les résultats sont étayés par la combinaison de plusieurs techniques (IRM, RPE, microscopie confocale de fluorescence, microscopie électronique). Concernant les mécanismes de transport empruntés par les magnétoliposomes pour atteindre les cellules tumorales, la voie d’endocytose non spécifique s’apparentant à un processus de macropinocytose est pressentie. Dans l’optique d’une application thérapeutique par hyperthermie, la capacité d’échauffement des magnétoliposomes a été pour la première fois explorée. Les résultats prouvent un comportement thermique des magnétoliposomes compatible avec les conditions d’un traitement par hyperthermie. Enfin, dans le cadre d’une étude portant sur le développement de cancers mécano-induits, l’application des magnétoliposomes a été élargie un autre organe non étudié à ce jour, le côlon. Ces travaux illustrent la problématique de la vectorisation magnétique au sein d’un organe situé dans une région interne de l’organisme. / First, the in vivo study on U87-glioblastoma bearing mice demonstrates the ability of magnetic targeting to accumulate magnetic-fluid-loaded liposomes (MFLs) into glioblastoma while sparing the rest of the healthy brain tissue. The enhancement of liposome local concentration by applying a magnetic field gradient produced by an external magnet is based on an amplified EPR effect (“enhanced permeation and retention” effect). The results were supported by combining several techniques (MRI, ESR, confocal fluorescence microscopy, electron microscopy). The investigations concerning the mechanisms of transport of the magnetoliposomes to reach the tumor cells suggest a non-specific endocytose pathway, presumably macropinocytosis. Secondly, in the context of a therapeutic application by hyperthermia the heat capacity of MFLs was explored. The results showed that the thermal behaviour of the magnetoliposomes depends on the containment state of the iron oxide nanocrystals and is compatible with the conditions of hyperthermia treatment. Finally, as part of a study concerning the development of mechanically induced cancers, application of MFLs was extended to target another organ not yet studied: the colon. This work especially illustrates the potential and related limits of magnetic targeting towards an organ located in an inner region of the body.

Page generated in 0.0794 seconds