Spelling suggestions: "subject:"clientneeds."" "subject:"citizens’needs.""
1 |
The potential of hot water treatments for curtailing seed-associated mycoflora.Erdey, Deon Philip. January 1995 (has links)
The consequences of toxigenic fungi associated with stored seed have stimulated these
investigations aimed at developing treatments to minimise this mycoflora, without
significantly reducing seed quality or viability. The effects of immersion in water at 55, 57
and 60 QC for durations of 5 to 60 min were assessed for maize (Zea mays L.) seed in terms
of fungal status, water uptake, electrolyte leakage, germination and seedling establishment.
These assessments were conducted immediately after treatment, after re-dehydration for 2
days in an ambient air stream, and following a 1 month storage period under either cold (4
QC) or ambient (25 QC) conditions (33% and 91% RH, respectively). In all cases, the results
are compared with those of control seeds and seeds pre-imbibed for 4 h at ambient
temperature.
The level of internal contamination, represented almost entirely by Fusarium moniliforme
Sheldon, declined significantly when assessed immediately after treatment, the efficacy of
which increased with increasing temperature and duration of treatment. Seeds immersed in
water at 55 QC for a duration of 15 min exhibited an 85% reduction in infection levels, when
compared with those of the control, while those treated at 57 and 60 QC (same duration) were
uninfected. Immersing seeds in hot water, however, resulted in a lag in germination rate and
drop in germination totality, the degree of which was enhanced by increasing duration and
temperature of treatment, suggesting the status of the manipulation to be an accelerated ageing
treatment. The electrolyte leakage studies indicated that the reduced germination performance
of these seeds was not due to plasmalemma disorganisation. These deleterious effects,
however, were counter-balanced as seeds treated at 55, 57 and 60 QC for durations up to 60,
30 and 10 min, respectively, produced plants of superior quality than those of the control,
which is ascribed to the reduction of systemically transmitted pathogens. The efficacy of the
hot water treatment in reducing the levels of seed infection and improving seedling quality
was enhanced by subsequent re-dehydration. The reduction in seed-associated mycoflora was
maintained following storage for 1 month at both 4 QC (33% RH) and 25 QC (91% RH).
However, both seed and seedling quality were adversely affected following storage even under
cold, dry conditions, which may be a consequence of the pre-treatment history of the seeds,
which had been cold-stored for two years prior to the experiments. Applied as a pre-sowing
treatment, therefore, hot water treatment shows promise for producing a crop of superior
quality, less prone to fusarial pathogenesis. This treatment may be of particular importance
to Third-World subsistence communities. / Thesis (M.Sc.)-University of Natal, 1995.
|
2 |
Phytate related response of maize seed to phosphorus and temperature.Asanzi, Nafabuanga Mireille. January 2006 (has links)
The aim of the study was to determine the effect of day/night temperatures (22/l6°C,
2712l oC and 33/27°C) and phosphorus levels (0, 0.12 and 1.2g per 20 kg soil) on seedling
establishment and seed viability during three stages of seed development (15, 22 and 33
days after flowering) for seed of normal and quality protein maize cultivars. Soluble
carbohydrate accumulation and mineral element content were determined using
environmental scanning electron microscopy (ESEM) in relation to seed phytate levels
and seed germination capacity at different stages of development. Leaf emergence rate
and plant height during seed development were significantly (P < 0.05) influenced by
temperature and phosphorus nutrition. Phosphorus in seed is stored primarily in the form
of phytic acid, also known as phytate. Accumulation of phytate takes place during
maturation phase of seed development. Phosphorus nutrition and temperature also caused
a.significant (P < 0.05) increase in seed germination at all stages of seed development.
Furthermore, phosphorus nutrition and temperature influenced occurrence of soluble
carbohydrates in seeds. Myo-inositol, the sugar alcohol that forms the basic structure of
phytate, was increased by P nutrition and increasing growth temperature. Whereas, QPM
maize was generally found to perform poorly than normal maize, with respect to phytate
content, seed germination and seedling establishment, both cultivars displayed the same
responses to phosphorus nutrition and temperature. In both cultivars, globoids, the sites
of phytate synthesis and storage, were found only in the embryonic axis. Subsequently,
there were significantly low levels of mineral elements (P, Mg and K) found in the
endosperm, compared with embryonic axis. This finding suggested that the embryonic
axis plays a major role in seed performance, through its effects emanating from phyate
metabolism. Myo-inositol plays a role in membrane biogenesis during stress conditions
such as temperature by maintaining the integrity of the cell wall and minimizes the
leaching of cations essential during germination.
Myo-inositol, although it occurs in small concentrations, could be used to indicate seed
quality in maize, because its accumulation was found to be associated with enhanced
phyate levels and better seed germination in a wide range of temperatures. Low vigour
seeds are associated with high electrolyte leakage during imbibition. Mineral elements
form a significant portion of the imbibition leachate, which causes seeds to lose nutrients
for early seedling growth. This study provided evidence that phosphorus nutrition can
alleviate poor seed vigour of maize by improving phytate levels. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
|
3 |
Development and application of SNP marker for low phytic acid gene (Ipa1-1) with studies on the effect of low phytic acid on seed germination, vigour and yield in maize.Naidoo, Roobavathie. January 2010 (has links)
Maize grain contains high levels of phytic acid which chelates iron, zinc and other micronutrients as it passes through the digestive systems of monogastric consumers reducing their bioavailability. Breeding for low phytic acid (LPA) content to improve micronutrient bioavailability is hampered by a tedious and destructive colorimetric method on the grain, low yields compared to the wild-types and reduced seed germination and vigour of LPA mutants. Breeding for LPA therefore should also incorporate breeding for improved germination and vigour in the mutants. Molecular markers to speed up the selection process and studies on gene action and combining ability for germination, vigour and yield parameters of the LPA mutants in combinations with other different maize germplasm will speed up breeding for this trait. The objectives of this study were: to develop a molecular marker linked to the lpa1-1 gene and apply this marker for foreground selection in a backcross breeding programme and to use amplified fragment length polymorphism (AFLP) markers for background selection to recover the recurrent parent genome to speed up the backcrossing process; to study gene action and combining ability for seed germination, vigour and yield from diallel crosses involving LPA mutants, QPM and normal endosperm maize inbred lines by replicated laboratory seed tests ( standard germination test and accelerated aging test) and field evaluations in South Africa and Zimbabwe.
A co-dominant single nucleotide polymorphism (SNP) marker which detects the transition base change of C/T nucleotides was developed from the gene sequence to identify the lpa1-1 trait. The 150 bp lpa1-1 SNP marker was validated by forward and reverse DNA sequencing of the parental amplification products which confirmed the C to T base change resulting in the LPA phenotype. The lpa1-1 SNP marker was used for foreground selection in 250 BC(2)F(1) progenies of CM 32 (LPA) x P 16 as the recurrent parent. This SNP marker was used to genotype the lines into homozygous dominant (wild type) and homozygous recessive (LPA) genotypes by their melting profiles and heterozygous genotypes by the normalised difference plots using high resolution melt (HRM) analysis. Seventeen heterozygous and 11 homozygous recessive lines were identified for background selection by fingerprinting with AFLP markers to determine the amount of recurrent parent (P 16) genome present. There were six EcoRI/MseI primer combinations tested with 277 data points scored (84% polymorphism rate). The amount of recurrent parent (P 16) genome recovered ranged from 62% to 92% with 13 lines showing greater than 83% of the recurrent parent genome.
The effects of diallel crosses generated between four LPA, three QPM and three normal endosperm maize lines were determined for seed germination and vigour using the standard germination and accelerated aging seed tests under laboratory conditions in accordance
with the procedures of the International Seed Testing Association. The specific combining ability (SCA) effects and general combining ability (GCA) effects were significant for the seed germination and vigour traits, indicating that genes with non-additive and additive effects were important in controlling these traits. However, the SCA effects were greater than GCA effects suggesting that genes with non-additive effects were predominant. The LPA parents showed reduced vigour compared to the normal and QPM inbred lines under both conditions, with LPA lines CM 31 and CM 32 showing stress tolerance. There were some combinations involving LPA lines, such as LPA x normal, LPA x QPM and LPA x LPA that retained high vigour and high germination rates under accelerated aging conditions, suggesting that they could be stress-tolerant..
A 10 x 10 diallel involving four LPA, three QPM and three Nm inbred lines was evaluated in replicated trials across six environments. Results show that both additive and non-additive gene effects were significant for resistance to northern corn leaf blight (NCLB), grey leaf spot (GLS) and Phaeosphaeria leaf spot (PLS) diseases. The additive gene effects were predominant for the yield and associated secondary traits such as days to mid-pollen shed (DMP), days to mid-silking (DMS), ear per plant (EPP) and grain moisture content (GMC) and grain yield. The LPA lines were early flowering and had quick grain dry down rate but all showed undesirable negative and significant GCA effects for yield. The yield of the LPA x LPA, LPA x Nm and LPA x QPM group of crosses was lower than the check hybrids by about 32 to 67% showing the need for yield improvement of the LPA combinations.
An eight x eight diallel involving two LPA and six normal endosperm lines was evaluated over two seasons in five locations with two replications for grain yield components and foliar diseases. There was significant additive and non-additive gene action for both seed germination and vigour traits with predominance of non-additive gene effects. Both additive and non-additive gene effects were significant for yield and associated traits such as anthesis dates and number of ears per plant. However, the additive gene action was predominant for yield and associated traits. Generally the LPA lines and their combinations showed lower germination and vigour. The LPA line, CM 32 showed stress tolerance under accelerated aging conditions. There were three LPA x Nm crosses that showed improvements to the means of seed germination and vigour and yield traits. Results indicated that there was not any significant correlation between yield and seed germination and between yield and vigour. Yield was, however, significantly and positively correlated with anthesis dates and GMC, indicating that higher yield was associated with longer growing cycles.
This study was able to successfully develop and apply the lpa1-1 SNP marker for foreground selection and AFLP markers for background selection in a backcross breeding programme. Problems of low seed germination, seedling vigour and grain yield of LPA lines and their combinations were confirmed. However results also indicated some potential of combining the LPA and QPM traits in a single cultivar. In general, procedures such as reciprocal recurrent selection, that emphasise both GCA and SCA effects would be recommended to improve seed germination, seedling vigour and yield in developing varieties with LPA trait. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
|
4 |
Adoption of hybrid maize seed, fertilizer and machinery technologies by communal farmers in KwaZulu-Natal.Essa, John Abdu. January 2001 (has links)
This study investigates the characteristics of technology adoption by small-scale farmers, notably the factors influencing the adoption of hybrid maize seed, inorganic fertilizer and machinery technologies. The study also on the basis of socio-economic and institutional factors, identifies the dimensions of small-scale farmers. Data for the study were obtained from a sample survey of 160 households in the Amangwane and Amazizi wards, located in the Okhahlamba magisterial district of KwaZulu-Natal during August 2000. The chief aim of this study is to generate empirical information that can be used to devise programs to encourage small-scale farmers to adopt agricultural technologies. The motivation of the research emanates from the fact that there is limited empirical information as to the actual
adoption patterns of agricultural technologies by small-scale farmers. The nature and relative importance of factors associated with technology adoption is time and location specific. The study by using more recent and broader information builds on previous studies in order to complement
technology adoption research on small-scale farmers. Understanding what factors influence the adoption of farm technologies and categories or dimensions of small-scale agriculture should provide information on policy options to stimulate technology adoption and improve growth in agricultural
productivity. A categorical dependent variable was specified to identify farmers' adoption pattern of hybrid maize seed and fertilizer. Seventy-two farmers were adopters of both hybrid seed and fertilizer, 56 were
adopters of either hybrid seed or fertilizer while 32 farmers were non-adopters. The results of binary logistic regression analysis indicate the adoption of hybrid maize seed and fertilizer is positively associated with, in order of importance, larger farms, older household heads, more value of livestock and better access to information sources. An index that indicates farmers' status of adoption of machinery technologies was constructed using a principal component analysis technique. The analysis showed that the adoption of machinery technologies can be represented by the single index which could be used as a dependent variable. A principal component regression analysis was subsequently used to determine factors contributing to the adoption of the machinery technology index. The results indicate that adoption was higher for (1) older and male headed households in general and residents of the Amangwane ward in particular; (2) operators of more arable land, owners of more livestock and earners of more non-farm income; and (3) households with large family labour, and households that made use of extension services and information sources. These results are consistent with hypothesised relationship between technology adoption and the predictors and are supported by previous empirical findings.
Priority should be given to policies that alleviate the tenure insecurity problem on arable land and this
in turn promotes a land rental market. This would involve an institutional change and legal infrastructural support services. Arable land holding is highly skewed within the communal setting and the state needs to address this equity issue on arable land through redistribution or reform policies.
The state needs also to invest in public goods that alleviate the problems of private investors for example by encouraging credit providers or promoting rural financial markets to alleviate liquidity
constraints and enhance adoption. Investment in farmer training and education should therefore, be seen as priority if higher adoption rates and an improvement in income are to be achieved. Inadequate and poor extension and information services imply an urgent need for the formation of community and farming associations and for the provision of extension services to groups of farmers. Investment in these areas may reduce the cost of technology transfer programmes. The results of a principal component analysis to identify the dimensions of small-scale farmers in
communal areas of KwaZulu indicate that farmers fall into distinct categories. Component 1 is an emerging commercial and a more mechanised household while component 2 is a land-less farm
household that is more educated and earns more non-farm income largely from contractor services. Component 3 is a non-farm female headed household that depends on income from land renting and
non-farm jobs. Component 4 is a small intensive garden farmer, headed by a relatively educated female
who has access to institutional services. Component 5 is relatively less educated, a female-headed and land-poor household that rents land and produces intensively. It is concluded that a single policy measure cannot do justice to the needs of all of the farmers since it would affect different households differently. An integrated and a comprehensive programme is
needed that would promote agriculture; facilitate income transfer or safety nets to alleviate poverty and the relief of short-term stress; address the problems of tenure insecurity; overcome the gender inequalities in accessing resources; and restructure institutional supports by providing rural finance, and an extension and legal infrastructure. / Thesis (M.Sc.Agric.)-University of Natal, Pietermaritzburg, 2001.
|
5 |
Genetic effects and associations between grain yield potential, stress tolerance and yield stability in southern African maize (Zea mays L.) base germplasm.Derera, John. January 2005 (has links)
Maize (Zea mays L.) is the principal crop of Southern Africa but production is threatened by gray leaf spot (Cercospora zea-maydis L.) and phaeosphaeria leaf spot (Phaeosphaeria maydis L.) diseases, drought and the use of unadapted cultivars, among other constraints. There are few studies of gray leaf spot (GLS) and Phaeosphaeria leaf spot (PLS) resistance, drought tolerance, yield stability and maize cultivar preferences in Southern Africa. The objective of this study was to: a) determine farmers’ preferences for cultivars; b) investigate the gene action and heritability for resistance to GLS and PLS, and drought tolerance; and c) evaluate yield stability and its relationship with high yield potential in Southern African maize germplasm. The study was conducted in South Africa and Zimbabwe during 2003 to 2004. A participatory rural appraisal (PRA) established that farmers preferred old hybrids of the 1970s because they had better tolerance to drought stress. Farmers also preferred their local landrace because of its flintier grain and better taste than the hybrids. The major prevailing constraints that influenced farmers’ preferences were lack of appropriate cultivars that fit into the ultra short seasons, drought and low soil fertility. Thus they preferred cultivars that combine high yield potential, early maturity, and drought tolerance in all areas. However, those in relatively wet areas preferred cultivars with tolerance to low soil fertility, and weevil resistance, among other traits. A genetic analysis of 72 hybrids from a North Carolina Design II mating revealed significant differences for GLS and PLS resistance, and drought tolerance. General combining ability (GCA) effects accounted for 86% of genetic variation for GLS and 90% for PLS resistance indicating that additive effects were more important than non-additive gene action in controlling these traits. Some crosses between susceptible and resistant inbreds had high resistance to GLS suggesting the importance of dominance gene action in controlling GLS resistance. Resistance to GLS and PLS was highly heritable (62 to 73%) indicating that resistance could be improved by selection. Also large GCA effects for yield (72%), number of ears per plant (77%), and anthesis-silking interval (ASI) (77%) under drought stress indicated that predominantly additive effects controlled hybrid performance under drought conditions. Although heritability for yield declined from 60% under optimum to 19% under drought conditions, heritability for ASI ranged from 32 to 49% under moisture stress. High heritability for ASI suggested that yield could be improved through selection for short ASI, which is positively correlated with high yield potential under drought stress. The stability analyses of the hybrids over 10 environments indicated that 86% had average stability; 8% had below average stability and were adapted to favourable environments; and 6% displayed above average stability and were specifically adapted to drought stress environments. Grain yield potential and yield stability were positively correlated. In sum, the study indicated that farmers’ preferences would be greatly influenced by the major prevailing constraints. It also identified adequate genetic variation for stress tolerance, yield potential and yield stability in Southern African maize base germplasm, without negative associations among them, suggesting that cultivars combining high yield potential, high stress tolerance and yield stability would be obtainable. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
|
6 |
Responses of maize (Zea mays L.) landraces to water stress compared with commercial hybrids.Mabhaudhi, Tafadzwanashe. January 2009 (has links)
Local maize landraces have evolved over hundreds of years of natural and farmer selection under varying conditions. These landraces may have developed tolerance to abiotic stresses such as water deficits during this cycle of selection. However, despite its continued existence and importance, little is known on their agronomy and responses to water stress. If indeed landraces have developed tolerance to water stress, they may prove a key genetic resource for future crop improvement in light of increasing water scarcity. The primary objective of this study was to evaluate the responses of a local maize landrace to water stress at different stages of growth in comparison to two known commercial hybrids, SC701 and SR52. Seed from a local maize landrace was multiplied and characterised according to kernel colour. Two distinct colours were selected for the purposes of this study, white (Land A) and dark red (Land B). In a holistic approach, the thesis consisted of four separate studies whose overall objective was to evaluate the responses of the maize landraces to water stress at different growth stages, up to and including yield and its components. These comprised three controlled environment studies (25°C; 60% RH) and a field trial. For the controlled environment, two water regimes were used, 25% field capacity (FC) (stress treatment) and 75% FC (non-stress). The first study investigated the effect of water stress on early establishment performance. Seed quality was evaluated using the standard germination test together with electrolyte leakage. Catalase activity and accumulation of proline were examined as seedling physiological response to water stress. The second study was conducted as a pot trial to investigate the effect of water stress on growth, photosynthesis and yield. Photosynthesis was measured as chlorophyll fluorescence (CF). In addition, a field study over three planting dates was conducted at Ukulinga Research Farm in Pietermaritzburg, under dryland conditions, during the period from August 2008 to June 2009. The objective was to evaluate the effect of planting dates and changing soil water content on growth, yield and yield components. Three planting dates were used, representative of early (28 August 2008), optimum (21 October 2008) and late planting (9 January 2009). Lastly, a study on hydro-priming was conducted, necessitated by observations made primarily in the first study. The study was carried out under controlled environment conditions. The objective was to evaluate whether hydropriming can improve germination, vigour and emergence under water stress. Seeds were soaked in water for 0 hours (Un-primed or control), 12 hours (P12) and 24 hours (P24). Results from the first study showed that maize landraces were slower to germinate and emerge, and produced less vigorous seedlings compared to the hybrids. The study showed that hybrids were more superior under optimum (75% FC) conditions than under stress conditions (25% FC). Physiological showed that both hybrids and landraces expressed catalase under water stress, with landraces showing slightly better expression compared to the hybrids. Proline accumulation was observed in both hybrids and landraces as a response to water stress, with hybrids being more sensitive to water stress. In the pot trial, results showed that the vegetative stage of both hybrids and landraces was less sensitive to water stress than the reproductive stage. Results showed no differences between field capacities, with respect to emergence, mean emergence time, leaf number, CF, ear prolificacy and ear length. Photosynthesis, as measured by CF, was shown to be desiccation tolerant. Water stress had a negative effect on cob mass, lines per cob, grains per cob and total grain mass, and resulted in barrenness in the landraces. The hybrids had superior yield compared to the landraces. Results for the field trials showed that planting date had highly significant effects on emergence, plant height, leaf number and days to tasseling (DTT). Landraces emerged better than hybrids in all plantings; highest emergence was in the early and late plantings. Optimum and late planting resulted in maximum plant height and leaf number, respectively, compared to early planting. Hybrids were superior, growing taller and with more leaves than landraces in all plantings. DTT decreased with successive plantings. Planting date had an effect on ear prolificacy (EP), kernels/ear (KNE) and 100 grain mass. Planting date had no effect on ear length and mass, kernel rows/cob, grain mass and yield. With the exception of EP, hybrids out-yielded the landraces in all three planting dates. Hydro-priming landraces for 12 hours and 24 hours, respectively, improved germination velocity index, reduced mean germination time and improved emergence and mean emergence time of maize landraces under water stress. Performance of hybrid seeds remained superior to that of landraces even after seed treatment to improve germination and vigour. Landraces were slower to germinate and emerge and produced less vigorous seedlings in controlled conditions only. Both hybrids and landraces expressed catalase activity and also accumulated proline in response to water stress, although hybrids were more sensitive to stress in the establishment phase. Results confirmed literature, showing that, for both hybrids and landraces, the vegetative stage is less sensitive to stress than the reproductive stage. Hybrids produced superior yields compared to landraces in both controlled environment and field conditions. However, the pattern of seedling establishment observed in the initial controlled environment study for hybrids and landraces was reversed in the field study. Lastly, hydro-priming is of some benefit to maize establishment. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
|
Page generated in 0.0353 seconds