• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise da fermentação de maltose e maltotriose por saccharomyces cerevisiae

Hollatz, Cláudia January 2004 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Biotecnologia. / Made available in DSpace on 2012-10-21T14:16:10Z (GMT). No. of bitstreams: 0 / A fermentação da maltose e maltotriose por Saccharomyces cerevisiae é de fundamental importância para diversas aplicações industriais desta levedura. No presente trabalho foi analisado aspectos do metabolismo destes açúcares relevantes para os processos de panificação e cervejaria. Por exemplo, células de leveduras continuam fermentando a massa do pão mesmo quando submetidas a refrigeração, sendo esta uma característica indesejável nas cepas de panificação. Uma vez que a maltose é o principal açúcar encontrado na massa do pão, a influência do frio (10ºC) na fermentação deste açúcar foi analisada em uma cepa selvagem de S. cerevisiae, e numa cepa csf1. mutante incapaz de transportar glicose e leucina a baixas temperaturas. A baixa temperatura afeta a cinética da fermentação por diminuir a velocidade de crescimento e rendimento celular final, com quase nenhum etanol produzido a partir de maltose pelas células selvagens a 10oC. A cepa csf1. foi incapaz de crescer em maltose a 10oC, indicando que o gene CSF1 é também necessário para a utilização de maltose a baixas temperaturas. Entretanto, o mutante csf1. também mostrou inibição acentuada da fermentação de glicose e maltose por estresse salino, além de uma significativa sensibilidade a uma série de compostos tóxicos, incluindo higromicina B, Ca2+, tetrametilamônio e pH ácido, mas não a altas concentrações de K+. Estes resultados indicam que o gene CSF1 estaria também envolvido na regulação de outros processos fisiológicos, incluindo a homeostase iônica. Em cervejaria a otimização do processo fermentativo depende da eficiente utilização de maltose e maltotriose pelas células de S. cerevisiae. Entretanto, as leveduras têm dificuldade de fermentar a maltotriose, e a incompleta utilização deste açúcar resulta, por exemplo, em uma cerveja de baixa qualidade, com um elevado extrato filtrável e sabor atípico. Para tentar compreender melhor a metabolização da maltotriose, a utilização deste açúcar foi analisada em cepas de S. cerevisiae com genótipos definidos e deletadas, ou não, em permeases específicas. A cepa selvagem analisada cresce lentamente em maltotriose, somente após uma extensa fase lag, sem produzir etanol durante o crescimento. Este fenótipo (crescimento lento e não fermentativo) não foi alterado pela deleção do gene AGT1, indicando que outro(s) transportador(es) estaria(m) provavelmente envolvido(s) na lenta utilização da maltotriose. Por outro lado uma cepa deletada nos transportadores de hexoses (hxt1-7. gal2.) fermentou eficientemente a maltotriose, mas quando o gene AGT1 foi deletado do genoma a cepa voltou a respirar este açúcar, indicando que a permease codificada pelo AGT1 é fundamental para a fermentação da maltotriose. Uma vez que a expressão constitutiva dos genes MAL é uma característica altamente desejável em cepas de panificação e cervejaria, decidiu-se analisar a contribuição que um gene regulador constitutivo teria na fermentação da maltotriose. Enquanto que algumas cepas MAL constitutivas foram capazes de fermentar eficientemente a maltotriose, a transformação de uma cepa selvagem incapaz de fermentar este açúcar com um plasmídeo contendo o gene MAL63c não melhorou a produção de etanol a partir de maltotriose. Estes resultados indicam a existência de outros fatores necessários para a eficiente fermentação de maltotriose por Saccharomyces cerevisiae. and maltotriose fermentation by Saccharomyces cerevisiae is of prime importance for several industrial applications of this yeast. In this work we have analyzed several aspects of the metabolism of these sugars relevant to the brewing and baking processes. For example, yeast cells still ferment the dough under refrigerated conditions, a characteristic highly undesirable for backing strains. Since maltose is the most abundant sugar in backing dough, we have studied the influence of cold temperature (10oC) on the fermentation of maltose by a S. cerevisiae wild-type strain, and a csf1. mutant impaired in glucose and leucine uptake at low temperatures. Cold temperature affected the fermentation kinetics by decreasing the growth rate and the final cell yield, with almost no ethanol been produced from maltose by the wild-type cells at 10oC. The csf1. strain did not grew on maltose when cultured at 10oC, indicating that the CSF1 gene is also required for maltose consumption at low temperatures. However, this mutant also showed increased inhibition of glucose and maltose fermentation under salt stress, and an increased sensitivity to several toxic compounds, including hygromycin B, Ca2+, tetramethylammonium and acidic pH, but not to high K+ concentrations. These results indicate that the CSF1 gene is probably involved in the regulation of other physiological processes, including ion homeostasis. Fermentation process optimization in the brewing industry depends on the efficient utilization of maltose and maltotriose by S. cerevisiae. However, yeasts have a difficulty to ferment maltotriose, and the incomplete utilization of this sugar results, for example, in a low quality beer with high content of fermentable sugars and atypical flavor profiles. To further understand the utilization of maltotriose, we analyzed the uptake of this sugar in yeasts strains with defined genotypes, deleted or not in specific transporters. The wild-type strain analyzed grows slowly in maltotriose, only after an extensive lag phase, and no ethanol was produce during growth. This phenotype (slow growth with no fermentation) was not affected by deletion of the AGT1 gene, indicating that probably other transporters may be involved in the slow utilization of maltotriose. On the other hand, a strain that was deleted in the hexose transporters (hxt1-7. gal2.) fermented maltotriose efficiently, but when the AGT1 gene was disrupted from the genome the strain started to respired the sugar, indicating that the AGT1 permease is required for maltotriose fermentation. Since the constitutive expression of MAL genes is a desired property of baker#s and brewery#s strains, we analyzed the contribution that a constitutive regulatory gene would have in maltotriose fermentation. While some MAL constitutive strains were capable to efficiently ferment maltotriose , the transformation of a wild-type strain incapable to ferment this sugar with a plasmid harboring the MAL63c gene did not improve ethanol production from maltotriose. These results indicate the existence of other factors required for the efficient fermentation of maltotriose by Saccharomyces.
2

Genômica do metabolismo de maltotriose em Saccharomyces cerevisiae: o papel determinante do gene AGT1 / Genomics of maltotriose metabolism in i>Saccharomyces cerevisiae the determinant role of AGT1 gene

Alves Junior, Sergio Luiz 03 March 2010 (has links)
Processos biotecnológicos importantes dependem da eficiente fermentação de hidrolisados de amido, ricos em maltose e maltotriose, pela levedura i>Saccharomyces cerevisiae. Entretanto, algumas linhagens apresentam dificuldade para consumir a maltotriose, o que diminui a eficiência fermentativa nesses processos. Embora se acredite que o transporte desse açúcar através da membrana plasmática seja o passo limitante para sua fermentação, existem conflitos na literatura em relação às permeases capazes de transportar a maltotriose. No intuito de melhorar a compreensão do metabolismo desse açúcar em S. cerevisiae, correlacionamos o fenótipo de várias cepas em maltotriose com seus respectivos genótipos. Para isso, identificamos os genes de transportadores de <font face=\"Symbol\">&#945-glicosídeos presentes nas linhagens analisadas e avaliamos o crescimento celular, a produção de etanol e as atividades de transporte por cada cepa. Para confirmar se tais genes eram, de fato, expressos, analisamos a expressão dos mesmos em diferentes condições de cultivo. Após verificarmos que a presença de um regulador constitutivo aumenta a expressão do gene AGT1 e incrementa a fermentação de maltose e maltotriose, deletamos esse gene do genoma de três linhagens de laboratório para avaliar a contribuição da permease Agt1p para a utilização de maltotriose. Embora as linhagens selvagens tenham consumido e fermentado rapidamente esse açúcar, as agt1 <font face=\"Symbol\">&#916 foram incapazes de transportar a maltotriose e de utilizála durante 3-4 dias de incubação. Contudo, após um período de incubação maior (8 dias), apenas uma das linhagens agt1 <font face=\"Symbol\">&#916 continuou incapaz de crescer em maltotriose, enquanto as outras apresentaram crescimento tardio, após ~100 h de fase lag, porém sem produção de etanol. Essa mesma fase lag extensa foi também observada em cepas industriais incapazes de expressar o AGT1. Além disso, através de QRT-PCR vimos que os transportadores MPH2- MPH3 não estão relacionados a esse fenótipo. Ao buscarmos o que poderia promover esse novo fenótipo, análises de microarray indicaram expressão aumentada de <font face=\"Symbol\">&#945-glicosidases e transportadores de hexose durante esse crescimento tardio. Após inocularmos uma linhagem hxt-null agt1 <font face=\"Symbol\">&#916 em maltotriose, detectamos glicose no meio de cultura durante o seu crescimento tardio, indicando que cepas que não contam com o Agt1p na membrana só conseguem crescer tardiamente em maltotriose em virtude da hidrólise extracelular desse açúcar. Por fim, nós demonstramos ainda que a <font face=\"Symbol\">&#945-glicosidase codificada pela ORF YJL216C é responsável por essa hidrólise extracelular da maltotriose, uma vez que a sua deleção tornou as células incapazes de crescer em maltotriose mesmo durante longos períodos de incubação. Assim, nossos resultados indicam que o Agt1p é o único transportador de maltotriose em S. cerevisiae e que o mesmo é necessário para promover eficiente fermentação desse açúcar. Pudemos também concluir que, em sua ausência, as células podem crescer em maltotriose somente se forem capazes de hidrolisá-la extracelularmente. Neste trabalho, discutimos também o poder de indução dos genes MAL pela maltose e pela maltotriose. Analisados em conjunto, nossos resultados sugerem que, embora não haja um indutor mais forte dentre esses açúcares, a atividade de transporte é maior em células crescidas em maltotriose. / Important biotechnological processes depends on the efficient fermentation of starch hydrolysates rich in maltose and maltotriose by Saccharomyces cerevisiae. However, some strains have difficulty to consume maltotriose, which decreases their fermentation efficiency. Although it is believed that maltotriose transport across the plasma membrane is the rate-limiting step for its fermentation, there have been conflicting reports whether all the known <font face=\"Symbol\">&#945-glucoside transporters in S. cerevisiae allow efficient maltotriose utilization by yeast cells. In order to contribute for a better understanding of maltotriose metabolism in S. cerevisiae, we correlated the phenotype of several strains on maltotriose with their respective genotype. For such correlation, we identified which <font face=\"Symbol\">&#945-glucoside transporter genes were present in the strains analyzed and we determined the kinetics of cell growth and ethanol production by each strain on maltotriose, as well as their transport activities. To be sure that those genes were, indeed, expressed, we also evaluated their expression under different growth conditions. After verifying that a constitutive MAL regulator increases the expression of AGT1 gene and improves maltose and maltotriose fermentation, we decided to delete this gene from three laboratorial strains to evaluate the contribution of the Agt1p permease for maltotriose utilization. In spite that the wild-type cells rapidly consumed and efficiently fermented this sugar, the agt1 <font face=\"Symbol\">&#916 strains were unable to transport maltotriose and to utilize this sugar during 3-4 days of incubation. However, after a longer period of incubation (8 days), just one of the agt1 <font face=\"Symbol\">&#916 strains was still unable to grow on maltotriose, while the other two strains presented delayed growth, after an ~100 h lag phase, but did not ferment this sugar. The same long lag phase on maltotriose was also seen in industrial strains which were unable to express their AGT1 gene. Furthermore, QRT-PCR assays demonstrated that MPH2-MPH3 transporters are not related to this phenotype. Seeking for what could promote this novel phenotype, microarray analysis indicated upregulation of <font face=\"Symbol\">&#945-glucosidases and hexose transporters during this delayed growth on maltotriose. After inoculation of an hxt-null agt1 <font face=\"Symbol\">&#916 strain on maltotriose, we detected glucose on the medium during cellular growth, indicating that strains which do not have Agt1p in their plasma membrane are able to grow after a long lag phase on maltotriose only because of extracellular maltotriose hydrolysis. Finally, we also show that the <font face=\"Symbol\">&#945-glucosidase codified by YJL216C is responsible for this delayed extracellular hydrolysis of maltotriose, since after its deletion cells became unable to grow on maltotriose at all. Thus, our results indicate that Agt1p is the only effective maltotriose transporter in S. cerevisiae and that it is required to promote an efficient fermentation of this sugar by yeast cells. We can also conclude that in its absence cells can only grow on maltotriose if they are capable to hydrolyze this sugar outside the cells. In the present work, we also discussed which one, maltose or maltotriose, is the best inducer of MAL genes. Taking together, our results suggest that, although there is no best inducer, <font face=\"Symbol\">&#945-glucoside transport activity is higher in maltotriose grown cells.
3

Genômica do metabolismo de maltotriose em Saccharomyces cerevisiae: o papel determinante do gene AGT1 / Genomics of maltotriose metabolism in i>Saccharomyces cerevisiae the determinant role of AGT1 gene

Sergio Luiz Alves Junior 03 March 2010 (has links)
Processos biotecnológicos importantes dependem da eficiente fermentação de hidrolisados de amido, ricos em maltose e maltotriose, pela levedura i>Saccharomyces cerevisiae. Entretanto, algumas linhagens apresentam dificuldade para consumir a maltotriose, o que diminui a eficiência fermentativa nesses processos. Embora se acredite que o transporte desse açúcar através da membrana plasmática seja o passo limitante para sua fermentação, existem conflitos na literatura em relação às permeases capazes de transportar a maltotriose. No intuito de melhorar a compreensão do metabolismo desse açúcar em S. cerevisiae, correlacionamos o fenótipo de várias cepas em maltotriose com seus respectivos genótipos. Para isso, identificamos os genes de transportadores de <font face=\"Symbol\">&#945-glicosídeos presentes nas linhagens analisadas e avaliamos o crescimento celular, a produção de etanol e as atividades de transporte por cada cepa. Para confirmar se tais genes eram, de fato, expressos, analisamos a expressão dos mesmos em diferentes condições de cultivo. Após verificarmos que a presença de um regulador constitutivo aumenta a expressão do gene AGT1 e incrementa a fermentação de maltose e maltotriose, deletamos esse gene do genoma de três linhagens de laboratório para avaliar a contribuição da permease Agt1p para a utilização de maltotriose. Embora as linhagens selvagens tenham consumido e fermentado rapidamente esse açúcar, as agt1 <font face=\"Symbol\">&#916 foram incapazes de transportar a maltotriose e de utilizála durante 3-4 dias de incubação. Contudo, após um período de incubação maior (8 dias), apenas uma das linhagens agt1 <font face=\"Symbol\">&#916 continuou incapaz de crescer em maltotriose, enquanto as outras apresentaram crescimento tardio, após ~100 h de fase lag, porém sem produção de etanol. Essa mesma fase lag extensa foi também observada em cepas industriais incapazes de expressar o AGT1. Além disso, através de QRT-PCR vimos que os transportadores MPH2- MPH3 não estão relacionados a esse fenótipo. Ao buscarmos o que poderia promover esse novo fenótipo, análises de microarray indicaram expressão aumentada de <font face=\"Symbol\">&#945-glicosidases e transportadores de hexose durante esse crescimento tardio. Após inocularmos uma linhagem hxt-null agt1 <font face=\"Symbol\">&#916 em maltotriose, detectamos glicose no meio de cultura durante o seu crescimento tardio, indicando que cepas que não contam com o Agt1p na membrana só conseguem crescer tardiamente em maltotriose em virtude da hidrólise extracelular desse açúcar. Por fim, nós demonstramos ainda que a <font face=\"Symbol\">&#945-glicosidase codificada pela ORF YJL216C é responsável por essa hidrólise extracelular da maltotriose, uma vez que a sua deleção tornou as células incapazes de crescer em maltotriose mesmo durante longos períodos de incubação. Assim, nossos resultados indicam que o Agt1p é o único transportador de maltotriose em S. cerevisiae e que o mesmo é necessário para promover eficiente fermentação desse açúcar. Pudemos também concluir que, em sua ausência, as células podem crescer em maltotriose somente se forem capazes de hidrolisá-la extracelularmente. Neste trabalho, discutimos também o poder de indução dos genes MAL pela maltose e pela maltotriose. Analisados em conjunto, nossos resultados sugerem que, embora não haja um indutor mais forte dentre esses açúcares, a atividade de transporte é maior em células crescidas em maltotriose. / Important biotechnological processes depends on the efficient fermentation of starch hydrolysates rich in maltose and maltotriose by Saccharomyces cerevisiae. However, some strains have difficulty to consume maltotriose, which decreases their fermentation efficiency. Although it is believed that maltotriose transport across the plasma membrane is the rate-limiting step for its fermentation, there have been conflicting reports whether all the known <font face=\"Symbol\">&#945-glucoside transporters in S. cerevisiae allow efficient maltotriose utilization by yeast cells. In order to contribute for a better understanding of maltotriose metabolism in S. cerevisiae, we correlated the phenotype of several strains on maltotriose with their respective genotype. For such correlation, we identified which <font face=\"Symbol\">&#945-glucoside transporter genes were present in the strains analyzed and we determined the kinetics of cell growth and ethanol production by each strain on maltotriose, as well as their transport activities. To be sure that those genes were, indeed, expressed, we also evaluated their expression under different growth conditions. After verifying that a constitutive MAL regulator increases the expression of AGT1 gene and improves maltose and maltotriose fermentation, we decided to delete this gene from three laboratorial strains to evaluate the contribution of the Agt1p permease for maltotriose utilization. In spite that the wild-type cells rapidly consumed and efficiently fermented this sugar, the agt1 <font face=\"Symbol\">&#916 strains were unable to transport maltotriose and to utilize this sugar during 3-4 days of incubation. However, after a longer period of incubation (8 days), just one of the agt1 <font face=\"Symbol\">&#916 strains was still unable to grow on maltotriose, while the other two strains presented delayed growth, after an ~100 h lag phase, but did not ferment this sugar. The same long lag phase on maltotriose was also seen in industrial strains which were unable to express their AGT1 gene. Furthermore, QRT-PCR assays demonstrated that MPH2-MPH3 transporters are not related to this phenotype. Seeking for what could promote this novel phenotype, microarray analysis indicated upregulation of <font face=\"Symbol\">&#945-glucosidases and hexose transporters during this delayed growth on maltotriose. After inoculation of an hxt-null agt1 <font face=\"Symbol\">&#916 strain on maltotriose, we detected glucose on the medium during cellular growth, indicating that strains which do not have Agt1p in their plasma membrane are able to grow after a long lag phase on maltotriose only because of extracellular maltotriose hydrolysis. Finally, we also show that the <font face=\"Symbol\">&#945-glucosidase codified by YJL216C is responsible for this delayed extracellular hydrolysis of maltotriose, since after its deletion cells became unable to grow on maltotriose at all. Thus, our results indicate that Agt1p is the only effective maltotriose transporter in S. cerevisiae and that it is required to promote an efficient fermentation of this sugar by yeast cells. We can also conclude that in its absence cells can only grow on maltotriose if they are capable to hydrolyze this sugar outside the cells. In the present work, we also discussed which one, maltose or maltotriose, is the best inducer of MAL genes. Taking together, our results suggest that, although there is no best inducer, <font face=\"Symbol\">&#945-glucoside transport activity is higher in maltotriose grown cells.
4

Maltotriose transport in yeast

Smit, Annel 12 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The conversion of sugar into ethanol and carbon dioxide is a process that has been intertwined with human culture and long as civilized man has existed. This fermentation process has been dominated by the micro-organism Saccharomyces cerevisiae and from providing ancient seafaring explorers of a non perishable beverage to equipping bakers with a raising agent to turn flour into bread; this organism with its fermentative potential, has formed an essential part of most societies. In more recent times, many industries still rely on this basic principle. The complexities and efficiencies of the conversion of sugar into its various fermentative byproducts have been studied and optimised extensively to meet the specific demands of industries. Depending on the raw material used as starting point, the major beneficiaries of the useful characteristics have been alcoholic beverage producers (wine, beer, and whiskey amongst others), bakers (bread leavening) and biofuel producers. One of the obstacles in fermentation optimisation is the sugar consumption preferences displayed by the organism used. S. cerevisiae can consume a wide variety of sugars. Depending on the complexities of its structures, it shows a preference for the simpler saccharides. The fermentation of certain more complex sugars is delayed and runs the risk of being left residually after fermentation. Many of the crops utilised in fermentation-based products contain large amounts of starch. During the starch degradation process many different forms of sugars are made available for fermentation. Improved fermentation of starch and its dextrin products would benefit the brewing, whiskey, and biofuel industries. Most strains of Saccharomyces ferment glucose and maltose, and partially ferment maltotriose, but are unable to utilise the larger dextrin products of starch. This utilisation pattern is partly attributed to the ability of yeast cells to transport the aforementioned mono-, di- and trisaccharides into the cytosol. The inefficiency of maltotriose transport has been identified as the main cause for residual maltotriose. The maltotriose transporting efficiency also varies between different Saccharomyces strains. By advancing the understanding of maltotriose transport in yeast, efforts can be made to minimise incomplete fermentation. This aim can be reached by investigating the existing transporters in the yeast cell membrane that show affinity for maltotriose. This study focuses on optimising maltotriose transport through the comparison of the alpha glucoside transporter obtained from different strains of Saccharomyces. Through specific genetic manipulations the areas important for maltotriose transport could be identified and characterised. This study offers prospects for the development of yeast strains with improved maltose and maltotriose uptake capabilities that, in turn, could increase the overall fermentation efficiencies in the beer, whiskey, and biofuel industries. / AFRIKAANSE OPSOMMING: Die transformasie van suiker na etanol en koolstof dioksied is so oud soos die beskawing self, en dit is van die vroegste tye af onlosmaaklik met die mens se kultuur verbind. Hierdie fermentasie-proses word gedomineer deur die Saccharomyces cerevisiae mikroorganisme. Hierdie organisme het antieke seevaarders voorsien van ‘n nie-bederfbare drankie en van ouds af aan bakkers ‘n rysmiddel verskaf waarmee meel in brood verander kon word. As gevolg van hierdie fermenteringspotensiaal het hierdie organisme ‘n onmisbare rol in meeste beskawings gespeel. Baie industrieë is steeds op hierdie basiese beginsel gebou. Die kompleksiteite en effektiwiteit van die transformasie van suiker na sy verskeie gefermeenteerde neweprodukte is breedvoerig bestudeer en geoptimiseer om aan die spesifieke behoeftes van verskeie industrieë te voeldoen. Afhangend van die grondstowwe wat as beginpunt gebruik is, is die primêre begunstigdes van die fermentasie proses die alkoholiese drankprodusente (onder andere die wyn-, bier- en whiskey produsente), bakkers en biobrandstofprodusente. Die suikerverbruik-voorkeur van die organisme wat die fermentering fasiliteer is een van die struikelblokke in die optimisering van die proses. S. cerevisiae kan ‘n wye spektrum van suikers verbruik maar dit toon ‘n voorkeur vir die eenvoudiger suikers. Die fermentasie van sekere van die meer komplekse suikers is vertraag en loop die risiko om agtergelaat te word na fermentasie. Vele van die gewasse wat in die gefermenteerde produkte gebruik word bevat groot hoeveelhede stysel. Vele soorte suikers word gedurende die afbreek van die stysel beskikbaar gestel vir fermentasie. Die brouers-, whiskey- en biobrandstof industrieë sal almal voordeel trek uit die verbeterde fermentasie van stysel en sy gepaardgaande dekstrin produkte. Meeste Saccharomyces gisrasse fermenteer glucose en maltose; maltotriose word gedeeltelik gefermenteer, maar die meer komplekse dekstrien produkte gevind in stysel word nie gefermenteer nie. Hierdie verbruikerspatroon kan gedeeltelik toegeskryf word aan die vermoë van gisselle om die bogenoemde mono-, di- and trisaccharides in die sitosol op te neem. Die oneffektiwiteit van maltotriose transport is identifiseer as die hoofoorsaak van post-fermentatiewe, oortollige maltotriose. Die effektiwiteit van maltotriose transport verskil ook tussen verskillende Saccharomyces rasse. Pogings om onvolledige fermentasie te veminder kan bevorder word deur die kennis rondom maltotriose transport in gis uit te bou. Hierdie oogmerk kan bereik word deur die bestaande transporters in die gissel se membraan wat ‘n affiniteit vir maltotriose toon te ondersoek. Hierdie studie fokus op die optimisering van maltotriose transport deur die vergelyking van die alpha glucoside transporter (AGT1) wat van verskillende Saccharomyces rasse afkomstig is. Die areas wat relevant is tot maltotriose transport kon deur spesifieke genetiese manipulasies identifiseer en gekarakteriseer word. Hierdie studie bevorder die vooruitsig op die ontwikkeling van gisrasse met verbeterde maltose en maltotriose transport vermoëns wat op sy beurt weer kan aanleiding gee tot die verbeterde fermentasie effektiwiteit in die bier, whiskey en biobrandstof industrieë.

Page generated in 0.0682 seconds