• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and control of VTOL vehicles with rigid manipulators / Modélisation et contrôle des véhicules VTOL avec manipulateurs rigides

Alvarez muñoz, Jonatan 07 November 2017 (has links)
La manipulation aérienne a été un domaine de recherche actif ces dernières années, principalement parce que les applications actives des véhicules aériens autonomes (UAV en anglais), augmente l'employabilité de ces véhicules pour diverses applications.Le développement récent de la manipulation aérienne a trouvé des applications potentielles dans les deux domaines, militaires et civils. Les applications militaires incluent le patrouilleur des frontières, la détection des mines, la reconnaissance, etc., tandis que les applications civiles sont en matière de gestion des catastrophes, d'inspection des ponts, de construction, de livraison de matériel, de recherche et de sauvetage, etc.La recherche sur la robotique aérienne implique principalement des hélicoptères et des architectures de décollage et d'atterrissage verticales (VTOL). Le principal avantage de ces plates-formes est leur maniabilité et la capacité d'effectuer des vols stationnaires, ce qui est essentiel pour les applications. Cette thèse porte sur les avions VTOL, où l'hélicoptère à quatre rotors ou quadrirotor est principalement étudié.En ce qui concerne le problème de la manipulation aérienne, la quantité d'applications augmente, mais en même temps, la complexité de la modélisation et du contrôle d'un tel système est également plus grande. L'un des plus grands défis réside dans leur charge utile limitée. Certaines approches ont essayé de résoudre le problème en utilisant plusieurs robots pour transporter des charges utiles avec des pinces ou des câbles, où leurs effecteurs et pinces doivent être légers eux-mêmes et capables de saisir des formes complexes. Un autre défi est que la dynamique du robot est considérablement modifiée par l'ajout de charges utiles. Cependant, pour le transport de la charge utile, il est nécessaire que les robots puissent estimer l'inertie de la charge utile et s'y adapter pour améliorer les performances de suivi.Selon les antécédents et les défis sur les véhicules VTOL portant des charges utiles ou des manipulateurs, la contribution du présent travail est centrée sur la modélisation et la conception d'une loi de commande non linéaire et une analyse de stabilité formelle pour la stabilisation asymptotique d'un véhicule VTOL portant un bras manipulateur. Pour cela, un modèle général d'un quadrirotor portant un bras manipulateur est proposé. Après cela, une loi de commande presque globalement asymptotique lisse pour la stabilisation de l'attitude qui prend en compte les effets de mouvement du bras est conçue. Une fois que le problème d'attitude est résolu, il est possible de concevoir un contrôleur non linéaire globalement asymptotique pour la dynamique de position basée sur l'utilisation de somme des fonctions saturés afin de prendre en compte les limitations des actionneurs. Enfin, certaines expériences pour valider les lois de commande proposées sont effectuées. / Aerial manipulation has been an active area of research in recent years, mainly because the active tasking of Unmanned Aerial Vehicles (UAV) increases the employability of these vehicles for various applications.The recent development of the aerial manipulation has found potential applications in both, military and civilian domains. Military applications include border patrolling, mine detection, reconnaissance, etc., while civilian applications are in disaster management, bridge inspection, construction, material delivery, search and rescue, etc.The research on aerial robotics has mainly involved helicopters and Vertical Take-off and Landing (VTOL) architectures. The main advantage of these platforms is theirmaneuverability and the capacity to perform hovers, which is essential for the applications. This thesis deals with VTOL aircrafts, where the four rotor helicopter, quadcopter or quadrotor is mainly studied.Regarding the problem of aerial manipulation, the amount of applications are increased, but at the same time the complexity of modeling and control of such a system are equally bigger. One of the biggest challenges arise from their limited payload. Some approaches have tried to solve the problem using multiple robots to carry payloads with grippers or with cables, where their end effectors and grippers have to be lightweight themselves and capable of grasping complex shapes. Another challenge is that the dynamics of the robot are significantly altered by the addition of payloads. However, for payload transport, it is necessary that the robots are able to estimate the inertia of the payload and adapt to it to improve tracking performance.According to the background and challenges on VTOL vehicles carrying payloads or manipulators, the contribution of the present work is centered on the modelling and the design of a nonlinear control and a formal stability analysis for the asymptotical stabilization of a VTOL vehicle carrying a manipulator arm. For this a general model of a quadcopter carrying a manipulator arm is proposed. After that, a smooth almost globally asymptotically control law for attitude stabilization which takes into account the arm motion effects is designed. Once the attitude problem is solved, it is possible to design a a globally asymptotically nonlinear controller for the translational dynamics based in the usage of nested and sum of saturation functions in order to take into account the actuators limitations. Finally, some experiments in order to validate the proposed control laws are carried out.
2

Models, algorithms and architectures for cooperative manipulation with aerial and ground robots / Modèles, algorithmes et architectures pour la manipulation coopérative entre robots au sol et aériens

Staub, Nicolas 17 January 2018 (has links)
Les dernières années ont vu le développement de recherches portant sur l'interaction physique entre les robots aériens et leur environnement, accompagné de l'apparition de nombreux nouveaux systèmes mécaniques et approches de régulation. La communauté centrée autour de la robotique aérienne observe actuellement un déplacement de paradigmes des approches classiques de guidage, de navigation et de régulation vers des tâches moins triviales, telle le développement de l'interaction physique entre robots aériens et leur environnement. Ceci correspond à une extension des tâches dites de manipulation, du sol vers les airs. Cette thèse contribue au domaine de la manipulation aérienne en proposant un nouveau concept appelé MAGMaS, pour " Multiple Aerial Ground Manipulator System ". Les motivations qui ont conduites à l'association de manipulateurs terrestres et aériens pour effectuer des tâches de manipulation coopérative, résident dans une volonté d'exploiter leurs particularités respectives. Les manipulateurs terrestres apportant leur importante force et les manipulateurs aériens apportant leur vaste espace de travail. La première contribution de cette thèse présente une modélisation rigoureuse des MAGMaS. Les propriétés du système ainsi que ses possibles extensions sont discutées. Les méthodes de planning, d'estimation et de régulation nécessaire à l'exploitation des MAGMaS pour des tâches de manipulation collaborative sont dérivées. Ce travail propose d'exploiter les redondances des MAGMaS grâce à un algorithme optimal d'allocation de forces entre les manipulateurs. De plus, une méthode générale d'estimation de forces pour robots aériens est introduite. Toutes les techniques et les algorithmes présentés dans cette thèse sont intégrés dans une architecture globale, utilisée à la fois pour la simulation et la validation expérimentale. Cette architecture est en outre augmentée par l'addition d'une structure de télé-présence, afin de permettre l'opération à distances des MAGMaS. L'architecture générale est validée par une démonstration de levage de barre, qui est une application représentative des potentiels usages des MAGMaS. Une autre contribution relative au développement des MAGMaS consiste en une étude exploratoire de la flexibilité dans les objets manipulés par un MAGMaS. Un modèle du phénomène vibratoire est dérivé afin de mettre en exergue ses propriétés en termes de contrôle. La dernière contribution de cette thèse consiste en une étude exploratoire sur l'usage des actionneurs à raideur variable dans les robots aériens, dotant ces systèmes d'une compliance mécanique intrinsèque et de capacité de stockage d'énergie. Les fondements théoriques sont associés à la synthèse d'un contrôleur non-linéaire. L'approche proposée est validée par le biais d'expériences reposant sur l'intégration d'un actionneur à raideur variable léger sur un robot aérien. / In recent years, the subject of physical interaction for aerial robots has been a popular research area with many new mechanical designs and control approaches being proposed. The aerial robotics community is currently observing a paradigm shift from classic guidance, navigation, and control tasks towards more unusual tasks, for example requesting aerial robots to physically interact with the environment, thus extending the manipulation task from the ground into the air. This thesis contributes to the field of aerial manipulation by proposing a novel concept known has Multiple Aerial-Ground Manipulator System or MAGMaS, including what appears to be the first experimental demonstration of a MAGMaS and opening a new route of research. The motivation behind associating ground and aerial robots for cooperative manipulation is to leverage their respective particularities, ground robots bring strength while aerial robots widen the workspace of the system. The first contribution of this work introduces a meticulous system model for MAGMaS. The system model's properties and potential extensions are discussed in this work. The planning, estimation and control methods which are necessary to exploit MAGMaS in a cooperative manipulation tasks are derived. This works proposes an optimal control allocation scheme to exploit the MAGMaS redundancies and a general model-based force estimation method is presented. All of the proposed techniques reported in this thesis are integrated in a global architecture used for simulations and experimental validation. This architecture is extended by the addition of a tele-presence framework to allow remote operations of MAGMaS. The global architecture is validated by robust demonstrations of bar lifting, an application that gives an outlook of the prospective use of the proposed concept of MAGMaS. Another contribution in the development of MAGMaS consists of an exploratory study on the flexibility of manipulated loads. A vibration model is derived and exploited to showcase vibration properties in terms of control. The last contribution of this thesis consists of an exploratory study on the use of elastic joints in aerial robots, endowing these systems with mechanical compliance and energy storage capabilities. Theoretical groundings are associated with a nonlinear controller synthesis. The proposed approach is validated by experimental work which relies on the integration of a lightweight variable stiffness actuator on an aerial robot.
3

Theory and Applications for Control and Motion Planning of Aerial Robots in Physical Interaction with particular focus on Tethered Aerial Vehicles / Commande et Planification de Mouvement pour des Robots Aériens en Interaction Physique avec leur Environnement : Théorie et Applications

Tognon, Marco 13 July 2018 (has links)
Cette thèse se concentre sur les robots aériens autonomes qui interagissent avec l’environnement et en particulier sur la conception de nouvelles méthodes de commande et de planification de mouvement pour tels systèmes. De nos jours, les véhicules aériens autonomes sont de plus en plus utilisés dans des nombreux domaines d’application, mais ils viennent utilisés surtout comme des simples capteurs. Au vu de ça, les défis majeurs dans le domaine de l’interaction physique aérienne, est aujourd’hui d’aller au-delà de cette application limitée, et d’exploiter entièrement les capacités des robots aériens afin d’interagir avec l’environnement. Dans le but de réaliser cet objectif, cette thèse considère l’analyse d’une classe spécifique de systèmes aériens interagissant avec l’environnement : les véhicules aériens attachés avec des câbles ou des bars. Ce travail se concentre sur l’analyse formelle et minutieuse de véhicules aériens attachés, en allant du contrôle et l’évaluation d’état à la planification du mouvement. Nous avons examiné notamment la platitude différentielle du système, trouvant deux sorties plate possibles qui révèlent des nouvelles capacités de tel système pour l’interaction physiques. En plus, poussé par l’intérêt pour l’interaction physique aérienne d’A à Z, nous avons abordés des problèmes supplémentaires liés à la conception, au contrôle et à la planification du mouvement pour des manipulateurs aériens. / This thesis focuses on the study of autonomous aerial robots interacting with the surrounding environment, and in particular on the design of new control and motion planning methods for such systems. Nowadays, autonomous aerial vehicles are extensively employed in many fields of application but mostly as autonomously moving sensors. On the other hand, in the recent field of aerial physical interaction, the goal is to go beyond sensing-only applications and fully exploit the aerial robots capabilities in order to interact with the environment. With the aim of achieving this goal, this thesis considers the analysis of a particular class of aerial robots interacting with the environment: tethered aerial vehicles. This work focuses on the thorough formal analysis of tethered aerial vehicles ranging from control and state estimation to motion planning. In particular, the differential flatness property of the system is investigated, finding two possible flat outputs that reveal new capabilities of such system for the physical interaction. The theoretical results were finally employed to solve the challenging problem of landing and takeoff on/from a sloped surface. In addition, moved by the interest on aerial physical interaction from A to Z, we addressed supplementary problems related to the design, control and motion planning for aerial manipulators.

Page generated in 0.1254 seconds