• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 25
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 257
  • 257
  • 106
  • 79
  • 70
  • 58
  • 45
  • 33
  • 27
  • 24
  • 21
  • 20
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A COMPUTER AIDED DESIGN APPROACH FOR OPTIMAL SYNTHESIS OF A HIGH SPEED, HIGH PRECISION PLANAR MANIPULATOR FOR PATH GENERATION AND PICK & PLACE APPLICATIONS.

Bhatt, Vinay Dhirajlal. January 1984 (has links)
No description available.
122

Analysis of configuration singularities of platform-type robotic manipulators.

January 1995 (has links)
by Lo, Ka-wah. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 76-81 (2nd gp.)). / Acknowledgments --- p.i / Abstract --- p.ii / Notations --- p.iii / List of Figures --- p.v / List of Tables --- p.vii / Chapter 1. --- Introduction / Chapter 1.1 --- Motivation --- p.1 / Chapter 1.2 --- Literature Review --- p.4 / Chapter 1.3 --- Objective --- p.10 / Chapter 2. --- Comparison of Different Approaches / Chapter 2.1 --- Sample Manipulator --- p.11 / Chapter 2.1.1 --- Force Decomposition Method --- p.12 / Chapter 2.1.2 --- Forward Rate Kinematics Base Method --- p.15 / Chapter 2.1.3 --- Grassmann Geometry Method --- p.18 / Chapter 2.2 --- Comparison Criteria --- p.20 / Chapter 2.2.1 --- Computational Complexity --- p.20 / Chapter 2.2.2 --- Scope of Application --- p.22 / Chapter 2.3 --- Summary --- p.23 / Chapter 3. --- Enumeration of Configuration Singularity / Chapter 3.1 --- Novel 6 DOF --- p.25 / Chapter 3.1.1 --- Result Analysis --- p.31 / Chapter 3.2 --- A 3 DOF with Symmetric Base --- p.33 / Chapter 3.2.1 --- Result Analysis --- p.35 / Chapter 3.3 --- A 3 DOF with Non-Symmetric Base --- p.36 / Chapter 3.3.1 --- Result Analysis --- p.37 / Chapter 3.4 --- A New Model of 6-SPS Defined by Kong et al --- p.40 / Chapter 3.5 --- A New Class of 6-SPS Platform-Type Parallel Manipulator --- p.45 / Chapter 3.5.1 --- The Hexagonal Base --- p.46 / Chapter 3.5.2 --- The Pentagonal Base --- p.50 / Chapter 3.5.3 --- The Tetragonal Base --- p.52 / Chapter 3.5.4 --- The Triangular Base --- p.55 / Chapter 3.6 --- Summary --- p.59 / Chapter 4. --- Numerical Analysis / Chapter 4.1 --- Parameter Analysis --- p.60 / Chapter 4.1.1 --- One Unknown Variable --- p.61 / Chapter 4.1.2 --- Two Unknown Variables --- p.63 / Chapter 4.2 --- Critical Value of Ratio R/q --- p.69 / Chapter 4.3 --- Summary --- p.72 / Chapter 5. --- Conclusions and Future Work / Chapter 5.1 --- Conclusions --- p.73 / Chapter 5.2 --- Future Work --- p.75 / References --- p.76 / Appendix --- p.82
123

Micro parylene actuators for aqueous cellular manipulation.

January 2003 (has links)
Chan, Ho Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 92-94). / Abstracts in English and Chinese. / ABSTRACT --- p.i / 摘要 --- p.iii / ACKNOWLEDGEMENTS --- p.iv / PUBLISHED PAPERS --- p.vi / TABLE OF CONTENTS --- p.vii / LIST OF FIGURES --- p.ix / LIST OF TABLES --- p.xi / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Traditional methods of cell manipulation --- p.1 / Chapter 1.2 --- New methods of cell manipulation using MEMS technology --- p.2 / Chapter 1.2.1 --- Electrostatic actuation --- p.2 / Chapter 1 2.2 --- Shape memory effect --- p.4 / Chapter 1.2.3 --- Pneumatic --- p.5 / Chapter 1.2.4 --- Electromagnetic --- p.5 / Chapter 1.2.5 --- Thermal --- p.6 / Chapter 1.3 --- Objective of this project --- p.1 / Chapter Chapter 2 --- Literature review --- p.11 / Chapter Chapter 3 --- "Design, modeling and heat transfer analysis" --- p.14 / Chapter 3.1 --- Design and the temperature-radius relationship of thermal actuators --- p.14 / Chapter 3.2 --- Heat transfer analysis --- p.17 / Chapter 3.2.1 --- Heat dissipation from the actuator --- p.18 / Chapter 3.2.2 --- Thermal transient response in liquid environment --- p.23 / Chapter 3.3 --- "Temperature, radius of curvature and tip deflection and actuation voltage relationship" --- p.24 / Chapter Chapter 4 --- Fabrication process of the thermal actuators --- p.28 / Chapter 4.1 --- Basic processes involved in fabricating the thermal actuators --- p.28 / Chapter 4.1.1 --- Photolithography --- p.28 / Chapter 4.1.1.1 --- Spin on and pattern photoresist --- p.29 / Chapter 4.1.1.2 --- Methods for alignment --- p.31 / Chapter 4.1.2 --- Lift off and etching processes --- p.33 / Chapter 4.1.3 --- Sacrificial release process --- p.35 / Chapter 4.1.4 --- Deposition --- p.38 / Chapter 4.1.4.1 --- Sputtering --- p.39 / Chapter 4.1.4.2 --- Thermal evaporation --- p.39 / Chapter 4.1.4.3 --- Thermal oxidation --- p.40 / Chapter 4.1.4.4 --- Parylene deposition --- p.41 / Chapter 4.2 --- Fabrication process of thermal actuators/grippers --- p.45 / Chapter 4.2.1 --- Fabrication of thermal actuators --- p.45 / Chapter 4.2.1.1 --- Mask design and making --- p.45 / Chapter 4.2.1.2 --- Process flow --- p.49 / Chapter 4.2.1.3 --- Fabricated samples --- p.53 / Chapter 4.2.1.4 --- Problems encountered during fabrication process --- p.54 / Chapter 4.2.2 --- Fabrication of multi-finger gripper --- p.55 / Chapter 4.2.2.1 --- Mask design --- p.55 / Chapter 4.2.2.2 --- Process flow --- p.57 / Chapter 4.2.2.3 --- Fabricated samples --- p.57 / Chapter Chapter 5 --- Testing thermal actuators --- p.58 / Chapter 5.1 --- Actuation by applying voltage (underwater) --- p.58 / Chapter 5.1.1 --- Experimental setup --- p.58 / Chapter 5.1.2 --- Experimental results --- p.59 / Chapter 5.1.3 --- Discussion --- p.63 / Chapter 5.2 --- Actuation by water bath heating --- p.66 / Chapter 5.2.1 --- Experimental setup --- p.66 / Chapter 5.2.2 --- Experimental results --- p.66 / Chapter 5.2.3 --- Discussion --- p.68 / Chapter 5.3 --- Frequency response and force analysis --- p.69 / Chapter 5.3.1 --- Frequency response --- p.69 / Chapter 5.3.2 --- Force analysis --- p.70 / Chapter Chapter 6 --- Cell grasping system --- p.73 / Chapter 6.1 --- Demonstration of cell grasping using single arm gripper --- p.73 / Chapter 6.2 --- MEMS chip with multi-finger grippers --- p.75 / Chapter 6.2.1 --- Mask design for MEMS chip --- p.76 / Chapter 6.2.2 --- Actuation of thermal gripper in air --- p.78 / Chapter 6.2.3 --- Demonstration of actuation and cell grasping --- p.79 / Chapter 6.2.4 --- A flexible cell grasping motion --- p.80 / Chapter 6.3 --- Proposed cell grasping system --- p.82 / Chapter Chapter 7 --- Summary and future work --- p.83 / Chapter 7.1 --- Summary --- p.83 / Chapter 7.2 --- Future work --- p.84 / APPENDIX --- p.87 / BIBLIOGRAPHY --- p.92
124

Improved Lyapunov-based decentralized adaptive controller

Dai, Reza A. 24 April 1991 (has links)
An improved robot manipulator decentralized non-linear adaptive controller that performs well in the presence of disturbances with unknown parameters and non-linearities is presented in this work. The proposed decentralized adaptive structure is a modification of the controller developed by Seraji [13-17] and is characterized by an auxiliary signal that compensates for the unmodeled dynamics and improves the tracking performance, by a feedforward component based on the inverse system to ensure high performance over a wide range and by a PD feedback component of constant gain to improve the speed of response of the system. As a result, a very accurate and fast path tracking is achieved despite the non-linearities. The scheme requires only the measurement of angular speed and displacement of each joint, and it does not require any knowledge about the mathematical model of the manipulator. Due to its decentralized structure, it can be implemented on parallel processors to speed up the operation. The main advantages of the proposed control scheme over similar controllers are that the control activity is smoother, it is less sensitive to sampling size and to the time period elapsed when the whole trajectory is traversed, as verified by simulations of several test conditions of-two of the joints of the PUMA 560 robot arm. / Graduation date: 1991
125

Robust controller design for robotic manipulators with saturation

Liang, Zuyang 20 November 1991 (has links)
The development of modern industries calls for the robotic manipulators with high speed and accurate tracking performance. Many authors have paid attention to robust control of robotic manipulators; however, only few authors have also considered the control problem of manipulators with power limitation. In this dissertation, the robotic manipulator is modeled as an uncertain system, with such uncertainties as varying moments of inertia, damping and payloads during tracking. The resulting uncertain part of the system is norm-bounded by a known constant. The total control consists of a linear part with gain matrix K, and a nonlinear part Δv, typically used for control of uncertain dynamical systems. Saturation of the resulting controller is assumed, with bounds imposed by the power limitation of actuators. It is proved at the dissertation that such a system is globally uniformly practically stable. The distribution of the control power between two controllers is discussed. It is found that when small gain matrix K is used and Δv dominates the controller, the solution to the system can approach a smaller region with faster response; that is, higher tracking accuracy is obtained. Theoretical analysis is provided to support the proposed control scheme. A two-link robotic manipulator is simulated with the results confirming the prediction. / Graduation date: 1992
126

Failure recovery in redundant serial manipulators /

Cocca, Christopher David, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 214-223). Available also in a digital version from Dissertation Abstracts.
127

Enhancing model accuracy for control : two case studies /

Xu, Wenwei, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
128

Enhancing model accuracy for control two case studies /

Xu, Wenwei, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
129

Geometric-based spatial path planning

March, Peter Setterlund, 1978- 24 September 2012 (has links)
Cartesian space path planning involves generating the position and orientation trajectories for a manipulator end-effector. Currently, much of the literature in motion planning for robotics concentrates on topics such as obstacle avoidance, dynamic optimizations, or high-level task planning. The focus of this research is on operator-generated motions. This will involve analytically studying the effects of higher-order properties (such as curvature and torsion) on the shape of spatial Cartesian curves. A particular emphasis will be placed on developing physical meanings and graphical visualization for these properties to aid the operator in generating geometrically complex motions. This research begins with a brief introduction to the domain of robotics and manipulator motion planning. An overview of work in the area of manipulator motion planning will demonstrate a lack of research on generating geometrically complex spatial paths. To pursue this goal, this report will then provide a review of the theory of algrebraic curves and their higher-order properties. This involves an evaluation of several different representations for both planar and spatial curves. Then, a survey of interactive curve generation techniques will be performed, which will draw from fields outside of robotics such as Computer Graphics and Computer-Aided Design (CAD). In addition to the reviewed methods, a new method for describing and generating spatial curves is proposed and demonstrated. This method begins with the study of a finite set of local geometric motion shapes (circular arcs, cusps, helices, etc). The local geometric shapes are studied in terms of their geometric parameters (curvature and torsion), analyzed to give physical meaning to these parameters, and displayed graphically as a family of curves based on these controlling parameters. This leads to the development of path constraints with well-defined physical meaning. Then, a curve generation method is developed that can convert these geometric constraints into parametric constraints and blend between them to form a complete motion program (cycle) of smooth paths connecting several carefully developed local curve properties. Up to ten distinct local curve shapes were developed in detail and one curve cycle demonstrated how all this could be combined into a full path planning scenario. Finally, the developed methods are packaged together into existing software and applied to an example demonstration. / text
130

Implementation of a robot control development environment

Lloyd, John, 1958- January 1985 (has links)
No description available.

Page generated in 0.0853 seconds