Spelling suggestions: "subject:"marché financiero dde " spread" "" "subject:"marché financiero dee " spread" ""
1 |
Stratégies optimales d'investissement et de consommation pour des marchés financiers de type"spread" / Optimal investment and consumption strategies for spread financial marketsAlbosaily, Sahar 07 December 2018 (has links)
Dans cette thèse, on étudie le problème de la consommation et de l’investissement pour le marché financier de "spread" (différence entre deux actifs) défini par le processus Ornstein-Uhlenbeck (OU). Ce manuscrit se compose de sept chapitres. Le chapitre 1 présente une revue générale de la littérature et un bref résumé des principaux résultats obtenus dans cetravail où différentes fonctions d’utilité sont considérées. Dans le chapitre 2, on étudie la stratégie optimale de consommation / investissement pour les fonctions puissances d’utilité pour un intervalle de temps réduit a 0 < t < T < T0. Dans ce chapitre, nous étudions l’équation de Hamilton–Jacobi–Bellman (HJB) par la méthode de Feynman - Kac (FK). L’approximation numérique de la solution de l’équation de HJB est étudiée et le taux de convergence est établi. Il s’avère que dans ce cas, le taux de convergencedu schéma numérique est super–géométrique, c’est-à-dire plus rapide que tous ceux géométriques. Les principaux théorèmes sont énoncés et des preuves de l’existence et de l’unicité de la solution sont données. Un théorème de vérification spécial pour ce cas des fonctions puissances est montré. Le chapitre 3 étend notre approche au chapitre précédent à la stratégie de consommation/investissement optimale pour tout intervalle de temps pour les fonctions puissances d’utilité où l’exposant γ doit être inférieur à 1/4. Dans le chapitre 4, on résout le problème optimal de consommation/investissement pour les fonctions logarithmiques d’utilité dans le cadre du processus OU multidimensionnel en se basant sur la méthode de programmation dynamique stochastique. En outre, on montre un théorème de vérification spécial pour ce cas. Le théorème d’existence et d’unicité pour la solution classique de l’équation de HJB sous forme explicite est également démontré. En conséquence, les stratégies financières optimales sont construites. Quelques exemples sont donnés pour les cas scalaires et pour les cas multivariés à volatilité diagonale. Le modèle de volatilité stochastique est considéré dans le chapitre 5 comme une extension du chapitre précédent des fonctions logarithmiques d’utilité. Le chapitre 6 propose des résultats et des théorèmes auxiliaires nécessaires au travail.Le chapitre 7 fournit des simulations numériques pour les fonctions puissances et logarithmiques d’utilité. La valeur du point fixe h de l’application de FK pour les fonctions puissances d’utilité est présentée. Nous comparons les stratégies optimales pour différents paramètres à travers des simulations numériques. La valeur du portefeuille pour les fonctions logarithmiques d’utilité est également obtenue. Enfin, nous concluons nos travaux et présentons nos perspectives dans le chapitre 8. / This thesis studies the consumption/investment problem for the spread financial market defined by the Ornstein–Uhlenbeck (OU) process. Recently, the OU process has been used as a proper financial model to reflect underlying prices of assets. The thesis consists of 8 Chapters. Chapter 1 presents a general literature review and a short view of the main results obtained in this work where different utility functions have been considered. The optimal consumption/investment strategy are studied in Chapter 2 for the power utility functions for small time interval, that 0 < t < T < T0. Main theorems have been stated and the existence and uniqueness of the solution has been proven. Numeric approximation for the solution of the HJB equation has been studied and the convergence rate has been established. In this case, the convergence rate for the numerical scheme is super geometrical, i.e., more rapid than any geometrical ones. A special verification theorem for this case has been shown. In this chapter, we have studied the Hamilton–Jacobi–Bellman (HJB) equation through the Feynman–Kac (FK) method. The existence and uniqueness theorem for the classical solution for the HJB equation has been shown. Chapter 3 extended our approach from the previous chapter of the optimal consumption/investment strategies for the power utility functions for any time interval where the power utility coefficient γ should be less than 1/4. Chapter 4 addressed the optimal consumption/investment problem for logarithmic utility functions for multivariate OU process in the base of the stochastic dynamical programming method. As well it has been shown a special verification theorem for this case. It has been demonstrated the existence and uniqueness theorem for the classical solution for the HJB equation in explicit form. As a consequence the optimal financial strategies were constructed. Some examples have been stated for a scalar case and for a multivariate case with diagonal volatility. Stochastic volatility markets has been considered in Chapter 5 as an extension for the previous chapter of optimization problem for the logarithmic utility functions. Chapter 6 proposed some auxiliary results and theorems that are necessary for the work. Numerical simulations has been provided in Chapter 7 for power and logarithmic utility functions. The fixed point value h for power utility has been presented. We study the constructed strategies by numerical simulations for different parameters. The value function for the logarithmic utilities has been shown too. Finally, Chapter 8 reflected the results and possible limitations or solutions
|
Page generated in 0.0904 seconds